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The components of the tensor cp ex{3 ( w, t) of the spectral intensity of an electric current in a 
non-relativistic magneto-active plasma, located in strong varying electric and magnetic 
fields, are calculated. From the electrodynamic point of view, such a plasma can be regarded 
as a medium with time-varying parameters. Some general properties of such a medium are 
considered. 

IN a previous paper[l] (cited below as I), the col­
lision-induced fluctuations were considered for a 
non-relativistic, non-equilibrium plasma. In this 
case, only the steady state was studied, in which 
the kinetic parameters of the plasma are un­
changing in time.* Such a case is realized, for 
example, when a strong constant or rapidly varying 
electric field E acts on the plasma. A work of 
Silin [a] was also devoted to the study of fluctua­
tions in a non-uniform steady-state plasma, in 
which a highly rarefied plasma is considered, 
such that collisions in it can be neglected, and the 
fluctuations of the electromagnetic field are en­
tirely determined by the Cerenkov radiation of the 
electrons. 

(1.1) 

where e, m are the charge and mass of the elec­
tron, k is Boltzmann's constant, T is the absolute 
temperature of the heavy particles of the plasma, 
n is the frequency of the field, "~ff is the effective 
collision frequency of the electron with the heavy 
particle in the absence of the field, o is the mean 
relative fraction of the energy lost by the electron 
in a single collision with a heavy particle: o « 1 
(for the precise meaning of veff and 0, see [ 4 ,s] ) . 
We shall regard the variable magnetic field Hext (t) 
as strong (and shall accordingly consider its ef­
fect on the plasma) in the case in which its ampli­
tude H1 and frequency n satisfy the condition 

(1.2) The present paper, which is a direct continua­
tion of paper I, is devoted to the consideration of 
the electromagnetic fluctuations in a non-relativistic where c is the velocity of light.* It is easy to see 
periodically non-uniform plasma-a case which 'that if the field Hext is strong, then the electric 
exists when strong variable (periodic) electric field Eext associated with it should generally be 
and magnetic fields act on the plasma. strong (E1 » Ep). This follows from the fact that 

1. STATEMENT OF THE PROBLEM 

Let us consider a non-relativistic plasma lo­
cated in strong variable electric and magnetic 
fields, t and also in a homogeneous constant mag­
netic field H0• 

By a strong electric field, we mean a field 
whose amplitude E1 satisfies the condition [4•5] 

*The work of Bekefi, Hirshfield and Brown,[•] which is 
devoted to the same problem, appeared after paper I had gone 
to press. 

tin the problem considered by us, there will always be 
strong external fields; therefore, we shall omit the word 
"external," using in certain cases the index "ext" (Eext 
and Hext). 

the amplitudes of the electric and magnetic fields 
at each point of space are connected by the linear 
equation H 1 = ex E1, and therefore, by the condition 
(1.2), 

or 

Here A= (3kTO/mc2) 1'12• Thus, if special meas­
ures are not taken to make the coefficient ex suffi-

*We note that in the kinetic theory of electrical conduc­
tion in a plasma one usually neglects the effect of the vari­
able magnetic field. This neglect is valid when the condi­
tion u/c « 1 is satisfied (u is the mean ordered velocity 
of the electron). 
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ciently large (large relative to A -1 or 
A-1 (v~ff/WH1 )-1 ,* then, in accord with (1.2), the 
condition Ep « E1 is automatically satisfied. In 
what follows, in speaking of a strong field, we 
shall always have in mind that the electric field 
is also strong in this case. It is evident that ful­
fillment of condition (1.2) no longer follows from 
satisfaction of the condition (1.1); therefore, the 
plasma may be situated in a strong electric but 
weak magnetic field. 

The effect on the plasma of strong external 
variable electric and magnetic fields reduces 
electrodynamically to the result that the plasma 
becomes a medium, generally speaking, with 
properties that are variable in time. The problem 
of the fluctuating electromagnetic radiation of such 
a plasma, set up within the framework of macro­
scopic electrodynamics,[s,7] reduces to the corre­
sponding solution of the following system of macro­
scopic field equations: 

CAJ 

rot H ~~ ~ i!E -l- 1' 71 \ K (t, T) E (t - T) dT -l-, 4n . 
c ot ' c .) -c- J ' 

0 

(1.3)t 

Here j = j (r, t) is the fluctuating current density 
at the point r, considered as an external current. 
The integral term in the first equation is the total 
current density induced by the field E (r, t) at the 
point r,~ and the coupling is assumed to be space­
local (in correspondence with the neglect of 
spatial dispersion here and everywhere in what 
follows). The component of the tensor Kik ( t, T ) 

takes into account the effect of the i -th component 
of the total current density at the time t on the 
6 -pulse of the k-th component of the field E, 
acting at the time ( t- T); for an inhomogeneous 
plasma, the components Kik (t, T) also depend on 
r. 

Before proceeding to the fluctuation part of the 
problem, let us consider some electrodynamic 
properties of a plasma in strong variable fields. 

2. SOME ELECTRODYNAMIC PROPERTIES OF A 
PLASMA IN STRONG ELECTRIC AND 
MAGNETIC FIELDS 

It follows from the definition of the tensor 
Kik (t, T) that Kik (t, T) = 0 for T < 0 (principle 

*An example of such a special case is a system in which 
a su(ficiently small volume of plasma is placed in a resonant 
cavity in the region of the antinode of the magnetic field and 
the node of the electric field, 

trot= curl. 
+In the case under consideration, it is useful to divide the 

total current into the conduction current and the polarization 
current. 

of causality). Furthermore, if the external influ­
ence is periodic with period 211/U (and we con­
sider only such interactions) then the components 
Kik (t, T ) are periodic in the variable t with 
period 21r ;r~: 

Ktk (t, T) = Ktk (t + 2:rt I Q, T). 

The tensor 
00 

a1k(w, t) = a,k (w, t + 2:rt/Q) = ~ Ktk (t, -r) e'"'~ d-r (2.1) 
0 

is obviously a direct generalization of the ordinary 
conductivity tensor (relative to the total current) 
to the case under consideration of media with 
variable parameters: for a harmonic field, E 
= E0e-iwt, the components of the current density 
are equal to aik (w, t)E0ke-iwt. Just as for media 
with constant parameters, the real and imaginary 
parts of the components 

a,k(w ,t) = a;.k(w, t) + ia;k(w, t) 

must satisfy the Kramers-Kronig relations (rela­
tive to the variable w ), which follow from the 
analyticity of the function Uik ( w, t) in the upper 
half plane of the complex variable w (for arbitrary 
t )PJ It is easy to show that the imaginary and 
real parts of the coefficients of the expansion 

of the function Uik ( w, t) in the Fourier series 

a (w, f) = L; Q-<n) (w) einr/.1 (2.2) 
n 

must satisfy these relations. The set of the tensors 
a (n) ( w) completely determines the electrodynamic 
properties of the medium. It is not difficult to 
prove that the local absorbing properties of the 
medium are determined only by the "zero" tensor 
a <O> ( w), just as they are for media with constant 
parameters, i.e., for example, for the harmonic 
field E0e-iwt, the time average of the power dissi­
pated per unit volume is equal to 

P = + [cr}W (w) EokE~1 + c.c.l. (2.3) 

Finally, we note the symmetry properties, 
which follow from (2.1) and (2.2): 

a,k (w, t) = a;k (- w, l), (2.4) 

a}~> (w) = cr};-n>• (- w). (2.4') 

We now turn to the calculation of the tensors 
a ( w, t) and a (n) ( w) for the cases of interest to 
us, namely, of a plasma located in strong electric 
and magnetic fields. On the basis of kinetic 
theory,C4•5J with accuracy up to the small terms 
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neglected by us,* we have the relation 
()() 

a (ffi, t) Eoe-i"'t = - 4n;N ~ uva ~fo ~~· t) dv, 
0 

(2.5) 

where f0 (v, t) is the symmetric part of the elec­
tron velocity distribution function (normalized to 
unity): 

f (v, t) = / 0 (v, t) + v f1(v, t) I v, 

· N is the density of electrons, the time dependence 
of which we shall neglect in what follows;t the 
vector u is the solution of the linear equation 

a;; + v (v)u- r:c [U, H0 + Hext(t)l = ; E0e-ioot, (2.6)t 

where v(v) = V ~ (v) + Vi (v) + V mel (v) iS the total 
number of heavy particle collisions of an electron 
having a velocity v. We note that the field Eext 
does not appear in Eq. (2.6); on the other hand, it 
does enter into the kinetic equation that determines 
the function f0 (v, t).[4•5J We shall assume that 
the variable field Hext ( t) is directed along the 
constant field H0, which direction is chosen for 
the z axis. Substituting Hext (t) = H1 cos Ot in 
(2.6), and solving the resulting equation, we obtain 
the following expression for the non-zero compo­
nents of the tensor O"ik ( w, t) [on the basis of 
Eq. (2.5) ]: 

()() 

a (ffi t) = - 4ne2N C v3 ~fo (v, t) dv (2. 7) 
zz ' 3m j v (v) -iw av ' 

0 

= _ 2ne2N ""J n (t:J.) J m (tl) ei<n-m)f!t 
3m .L.J 

n,m 

()() 

x ~ v8 {[v (v)- i (ffi- ffiH-1- mQ)r1 

(2. 7') 

*Let us list the chief small parameters which can appear 
in our problem. First, we have the quantity 8, which is small 
in many cases. Next, the small quantity 8veffl0 occurs for 
rapidly varying fields. In cases of strongly (or conversely, 
weakly) ionized plasma, there are also small parameters, 
equal to 8v/ve and Ve/8v, respectively (ve is the number of 
interelectronic collisions). In what follows, in speaking of 
the neglect of small terms, we shall have in mind the neglect 
(in comparison with unity) of terms of the order of the small 
parameters enumerated. 

tThe change in the density f:J.N(t) = div Eext(t)/41Te is also 
necessarily small if the field Eext is sufficiently homo• 
geneous. 

Hu, H. + Hextl = U X <Ho + Hext)• 

( . 2ne2N "" Clxy ffi, f)=- Clyx (ffi, f) =- l ~ .L.J Jn (t:J.) J m (t:J.) ei (n-m) D.t 

n,m -X ~ v8 {[v (v)- i (ffi- ffiH + mQ)]-1 
0 

-[v (v)- i (ffi + ffiH- nQ)]-1 } atoa(~, t) dv, (2. 7") 

where WH = I e I H0/mc, Jn (~) is the Bessel func­
tion, ~ = WH1 /0 = I e I H1 /mcO. If the field Hext 
is absent (more precisely, for ~ « 1 ), only a 
single term remains of the sums appearing on the 
right hand sides of (2.7') and (2.7"), corresponding 
to n = m = 0 (Jn (0) = o0n)· The time dependence 
of the components of <Tik ( w, t) is determined in 
this case only by the time dependence of the distri­
bution function f0 (v, t ). For a constant or rapidly 
varying (0 » o v eff) field Eext. even this source 
of time dependence vanishes,C4 5] and the electro­
dynamic properties of the plasma cease to be time 
dependent. Precisely this case was considered in 
I. 

In the presence of a strong field Hext ( t) 
(~ .G 1 ), the greatest interest attaches to the case 
in which 0 .G veff; under this condition, the distri­
bution function f0 (v, t) does not depend on the 
time, with accuracy up to small terms, and the 
effect of the non-stationarity is entirely brought 
about by a parametric change in the magnetic field. 
In this case, for the tensor u f~ ( w) which deter­
mines the absorption properties of the medium, 
we obtain the following from (2. 7) - (2. 7"): 

CJ(O) (ffi) = (j(O) (ffi) 
XX yy 

()() 

=-2n;;N ~J~(t:J.)~ v3{[v(v)-i(ffi-ffiH-!-nQ)]-1 
n 0 

+ [v (v)- i (ffi + ffiH + nQ)]-1} at~~v) dv, (2.8) 

Cl(O) (ffi) = - o(O) (ffi) 
xy yx 

()() 

= -i 2~~N~J;(t:J.)~v3 {[v(v)-i(ffi-ffiH + nQ)]-1 
n 0 

"') -1} ato (v) d -[v(v)-i(ffi-1-ffiH-1-m,] -av v. (2 .8') 

The expression for u ~~ ( w) is given by the right 
side of (2. 7) with the replacement of af0 (v, t)/av 
by afo (v)/av. It follows from these expressions, 
with account of the condition 0 ;::, Veff• that, in the 
case of parametric change of the magnetic field 
under consideration, the local absorbing proper­
ties of the plasma have distinct maxima ("peaks") 
at the frequencies w = ±WH + nO (n = 0, ± 1, ... ), 
the "amplitudes" (heights) of which are deter-
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mined by the quantity D. = wH1 /U and the number 
n. For a particular value of D., which coincides 
with the root of the function J n ( x ), the "peaks" 
of number n vanish. In particular, for H1 

= x1mcUj I e I [x1 ~ 2.5 is the first root of the 
function J 0 (x)], the zero "peak" vanishes and 
the plasma becomes practically locally non­
absorbing at a gyromagnetic frequency w = WH·* 
This effect of the change in the absorption of the 
plasma was considered briefly by Lugovo1 [S] in 
connection with the discussion of the possibility of 
the use of cyclotron resonance for obtaining nega­
tive absorption by means of the parametric change 
in the external magnetic field. 

3. THE SPECTRAL INTENSITY TENSOR FOR THE 
CURRENT FLUCTUATIONS 

Just as in the case of a stationary plasma,ct-aJ 
the spectral intensity of the fluctuation components 
in the case of a periodically non-stationary plasma 
is also of prime interest. Set within the framework 
of macroscopic electrodynamics, the problem re­
duces, in the first place, to the determination of 
the spectral intensity tensor of the current fluctua­
tions <ja (r, w) j~ (r', w') > and in the second 
place to the corresponding solution of the system 
(1.3) which, being rewritten for the ]fourier ampli­
tudes of the field intensity E (r, w) and H(r, w), 
has the form (the r dependence is not shown) 

rotH (w) = -i.!!:?...e(w) E(w) 
c 

+ 4n ,,, cr(n) (w + nQ) E (w + nQ) + ~ j (w), 
c ~ c 

n 

rotE (w) = i.!!:?... H (w), c (3.1) 

where 

and the prime on the summation sign indicates that 
the term with n = 0 is omitted. 

Inasmuch as spatial dispersion is neglected, the 
spatial correlation of the current fluctuation j is 
local (o correlation) t .cs,to] 

*In another paper, we propose to look into the use of this 
effect of the local absorption change (by means of a para­
metric change of the magnetic field) to produce "transpar­
ency" at frequencies w = ±wH + nO for a magneto-active 
plasma with dimensions that are large in comparison with 
the wavelength. 

tWe note in passing that neglect of spatial dispersion in 
the medium itself has no effect on the value of the spectral 
intensity of the radiation of the. medium in the external 
space. [ 6 •10 l 

Therefore, 

<jo. (r, w) j~ (r + p, w + p)) =Do.~ (w, p) b (p), (3.2) 

where the tensor Daf3 ( w, p) can be connected with 
the correlation function of the fluctuations in the 
velocity of a single electron in the plasma: 
lf!a{3 (T, t) = <va (t)v/3 (t+ T)>. Actually, on the 
basis of the relation 

(see I) 

co 

1 \ ja. (r, w) = 2n .l 
-co 

<jo. (r, t) j13 (r + p, t + -r)) = Ne2lJlo./3 (-r, t) b (p), 

we get* 
co 

Ne2 \ 
Do.~ ( w, p) = (2n)• .l 

-00 

00 

1 \ IPI3a. (w, t) e-iPt dt, 21t.l 

where 
-00 

00 
N z • 

\Po.~ (w, t) = 2: ~ 'lla.13 ( 't', t) ei"'~d't'. 
-00 

The components of the tensors lfia{3 ( T, t) and 

(3.3) 

(3.4) 

'Pa{3 (w, t) are periodic functions of t with period 
27r/U. It is easy to establish the fact that the 
components 'Pa/3 ( w, t) and the coefficients 
cp(n) ( w) of their expansions in Fourier series 

a{3 
satisfy the same conditions of symmetry as the 
tensor components aik (w, t) and a.<k> (w ). The 
tensor lf!a{3 ( T, t) also possesses aJother obvious 
symmetry property which follows from its defini­
tion: lf!a{3 (- T, t) = lfi{3a ( T, t- T ). This property 
makes it possible to compute the tensor 'Pa{3 ( w, t) 
[or Daf3 ( w, p) ] from the velocity tensor lf!a/3 ( T, t ), 
which is given only for T > 0. For this purpose, it 
suffices to transform Eq. (3.4) to the following 
form: 

00 

Ne2 {\ I"{Jo.[3 (w, t) = 2it .l [lJla/3 ('t', f) + 'll13a ('t', t- -r)J COS W't'd't' 

0 

00 

+ i~ l'lla.f3('r, t) -\jl13"'('t', t- -r)l sinw-rdr}. (3.5) 
0 

The components lf!a{3 (T, t) can be computed for 
T > 0 on the basis of kinetic theory, similar to 
what was done in I. In the interval between colli­
sions, the electron behaves as if it were free, and 

*Some general relations of the correlation theory of 
periodically non-stationary random processes can be found 
in [u]. 



1326 F. V. BUNKIN 

its velocity satisfies the equations* 

Vx + (coH + COH, COS Qt) Vy = 0, 

Vy- (coH + COH, COS Qt) Vx = 0, Vz = 0. (3.6) 

We introduce the notation: ~ (t) = WHt + 6 sinnt. 
The values of vx (t + T ), Vy (t + T ) and 
Vz (t + T ), computed from Vx (t), vy (t) and 
Vz (t), under the condition that no collision takes 
place within the time interval T, have [on the 
basis of (3.6)] the form 

Vx (t + 't) = [ Vx (t) cos <I> (t) + Vy (t) sin <P{t) J cos <I> (t + 't) 

+ lvx (t) sin <I> (t)- Vy (t) cos <I> (t)l sin <I> (t + 't), 
Vy (t + 't) = ( Vx (t) COS ¢ (t) 

+ Vy (t) sin <I> (t)] sin <I> (t + 't) + [- Vx (t) sin <I> (t) 

+ Vy (t) COS ¢ (t)) COS ¢ (t + 't); 
Vz (t + 't) = Vz (f). (3. 7) 

Let w ( s, v ) = exp [ - s /l ( v ) ] /l ( v ) [ l = v / v ( v ) ] 
be the distribution function for the length of the 
mean free path of the electrons for a given veloc­
ity v. Then, for non-zero components of 
1/Ja{j ( T, t) for T > 0, and on the basis of Eq. (3. 7), 
we obtain the equation 

co co 

'Pzz('t,t) = ~ v~fo(v,t)dv~e-sfte(+-•) ~5 , 
-oo 0 

'Pxx('t, f) =ljJyy{'t, f)= COS[¢ (t + 't)- <P {t)J 

X r v;fo(v,t)dvre-slte(+-•) ~s. 
-oo 0 

'Pxu {'t, i)= -'Pux ('t, t) =sin [<I> (t + 't) -<I> (t)J 
co co 

co 

(n)( ) = .l:_ N 2\ 4{ v(v)/ro 
<pzz co 3 e j V ro2 + iv (v) 

0 

+ v (v)/(oo + nQ) + inQ } t<n> ( ) d 
w + nQ- iv (v) ro (ro + nQ) 0 V V, 

00 

(n) (co)= <n>(co)= 2_ Ne2 \ v4{_1_[v(v)/(ro -roH) 
<pxx <pyy 3 j 2 ro-wH+iv(v) 

0 

v (v)/(ro + roH) v (v)j(ro + nQ- roH) 

+ ro + roH + i'V (v) + ro + nQ- roH- iv (v) 

v (v)/(ro + nQ + roH) J 
+ ro + nQ + roH- iv (v) 

+ iro _ i (ro + nQ) } f~n) (v) dv, 
oo2 - w'Jt (ro + nQ)2 - ro~ 

2 oo~ { 1 [ v (v)/(ro- roH) <p<n> (co)=- <p<n>(co) = i- Ne2 v4 - . 
xy yx 3 2 ro -roH +IV (v) 

0 

v (v)j(ro + roH) v (v)f(ro + nQ- roH) 

- ro + roH + iv (v) + ro + nQ- roH- iv (v) 

_ v (v)/(ro + nQ + roH) J 
ro+nQ+roH- tv(v) 

(3.9) 

where f~n) (v) are the expansion coefficients of 
the distribution function f0 (v, t) in a Fourier 
series. For a time-independent function f0 (v), 
we have f~n) (v) = f0 (v)o 0n and Eqs. (3.9) trans­
form into Eq. (6) in I. 

In the presence of a strong magnetic field, we 
again obtain only the case in which n ~ Veffi here, 
n » OVeff and the function fo (v) is time independ­
ent (with accuracy up to small terms). Substituting 
(3.8) in (3.5) for this case, we get 

X ~ v;fo (v, t) dv ~ e-s/1 6 ( +- T) ~s, (3.8) <p~~) (co) = 6on<j)zz (co) 
-co 0 

where 9 (t) = 1 fort> 0 and (J (t) = 0 fort< 0. 
Further, let us first consider the case when 

the field Hexdt) is absent (6 « 1 ); here 
~ (t + T)- ~ (t) = WHT. Substituting (3.8) in 
(3.5), and carrying out the integration first over T 

and then over s, we get the following expressions 
for the components of the tensor cp (n) ( w ): 

*The inhomogenous equations, with the right hand sides 
equal to (e/m)Eext i(t) are more accurate equations for the 
motion of the electron between collisions. However, it can 
be shown that account of the action of the field Eext(t) 
results in a contribution of the order 8 to the quantity of 
interest to us; we therefore start out with the homogeneous 
equation (3.6). 

00 

= + 60nNe2 ~ ifv (v) [co 2 + v2 (v)]-1 fo (v) dv; 
0 

<p~~ (co) =<p~~l (co)= +Ne2 2]Jk(d)Jk-n(d) 
k 

00 

X ~ v4v (v) {[(co -coH- (k- n) Q)2 + v2 (v)]-1 

0 

+(-It [(co+ COH- (k- n) Q)2 + v2 (v)]-1} fo (v) dv; 

<p~~ (co) = -<p~~l (co)= i +Ne2 l]J k (d) J k-n (d) 
k 

00 

X~ v4v (v) {[(co -coH-(k-n) Q)2 + v2 (v)]-1 

0 

-(-It [(co + coH- (k -n) Q)2 + V 2 (v)]-1} fo (v) dv. 

(3.10) 
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For 1::. « 1, these expressions transform into the 
Eqs. (6) of I. 
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