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The single-fluid magnetohydrodynamic equations with particle collisions taken into account 
are obtained for a nonisothermal plasma. The effect of particle collisions on the spectrum 
of magnetohydrodynamic and magnetic-sound plasma waves is investigated. 

1. Klimontovich and Silin [t] ( cf. aJso [2] and [3], 

Sees. 15 and 24) have carried out a single-fluid 
magnetohydrodynamic analysis of a nonisothermal 
plasma in which particle collisions were neglected. 
The possibility of carrying out this hydrodynamic 
analysis rests on the fact that weakly damped mag­
netohydrodynamic and magnetic-sound waves can 
propagate in a nonisothermal plasma in which 
Te » Ti· These waves are damped by Cerenkov 
absorption and cyclotron absorption in the plasma. 
When particle collisions are taken into account, 
however, the dispersion relation for the weakly 
damped waves, which is obtained when particle 
collisions are neglected can be changed markedly, 
even when the collision integral in the kinetic 
equation is a relatively small term. Specifically, 
it will be shown below that under certain condi­
tions the damping factor for the plasma waves is 
determined by the particle collisions while the 
wave frequencies are essentially unaffected by 
collisions. 

In the high-frequency region, where the thermal 
motion of the plasma particles can be neglected, 
the important collisions are electron-ion colli­
sions (cf. [aJ, Sees. 16 and 23). Here we consider 
a nonisothermal plasma in the frequency region w 
(or the region of the characteristic time of the 
problem 1/ w) defined by the condition 

(A) 

where Ve and Vi are the thermal velocities of the 
electrons and ions, while k is the wave vector 
(the characteristic dimension of the problem is 
1/k); the ion-ion collisions predominate under 
these conditions. Electron-electron and electron­
ion collisions can be neglected. Below we derive 
the magnetohydrodynamic equations for a noniso­
thermal rarefied plasma with ion-ion collisions 
taken into account. We assume that (A) and the 
following conditions are satisfied: 

(B) 

where Qi = eiBo/Mc is the ion Larmor frequency 
and wLi = ..J 47TefNi /M is the ion Langmuir fre­
quency. 

2. If particle collisions are neglected the com­
plete system of magnetohydrodynamic equations 
for a single-fluid nonisothermal plasma is 

8B/8t =rot [vB], div B = 0, 

8p/8t + div pv = 0, 

(1)* 

(2) 

iJv ( a) v~ iJp 1 1 dis -+ v- v=---+-[rotB BJ+-F1 at or p or 4:rco ' Po ' 
(3) 

where v s = ..f I ei I e I KT e /M is the velocity of 

sound while F?is represents the dissipative forces 
due to Cerenkov absorption and cyclotron absorp­
tion of the plasma waves. In contrast with the non­
dissipative terms, the dissipative term in the mag­
netohydrodynamic equations is obtained in an ap­
proximation linear in the function that describes 
the deviation of the particle distribution from the 
equilibrium (Maxwellian distribution); F?is is 
given by the expression [l] 

pdis pov~ {[s r8 iJ\, [B [B a]] J 1 r8 a)B 
11 = 8 2 oi \ o ar J T o o a.: . 8 2 \ o a.: oj 

0 l 0 

-[Bo[Bofr]l-t,J~dr'QI (r- r') Vi (r', t), (4) 

where 

Q ( ) __ 1_ j:rc m i' dk ikr .!!!!__ 
1 r - (2n)3 l/ 2 xT e J e I kBo I · 

Account of plasma particle collisions in the 
equation of motion (3) and in the expression for 
F?is, gives rise to a dissipative force F~is due 
to ion-ion collisions. To obtain an expression 
for ~is we recall the derivation of Eq. (3). Mul-

*rot = curl, [ v B] = v x B 
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tiplying the ion kinetic equation by p and integrat­
ing over the momenta we have 

apvi a e. { 1 } 
-a~=- ari Dii(r,t)+P~ £ 1 +-c[vB]1 , (5) 

where IIij ( r, t) is the momentum flow tensor: 

nij (r, t) = ~ dpp;vjt) (p, r, t). (6) 

The thermal motion of the ions in a nonisothermal 
plasma can be neglected if (A) is satisfied; hence, 
as a first approximation, the momentum flow ten­
sor can be written in the form 

(7) 

Substituting this expression in (5) and eliminating 
the electric field E (this is done by taking account 
of the motion of the electrons in the plasma ) we 
obtain the equation of motion (3). 

When ion-ion collisions are introduced, Eq. (7), 
which represents the nondissipative part of the 
momentum flow tensor, must be supplemented by 
the dissipative part of IIij(r, t). We limit our­
selves to the approximation linear in the deviation 
of the distribution function from the equilibrium 
(Maxwellian) function. Solving the ion kinetic 
equation by successive approximations in the 
collision integral and expressing the dissipative 
part of IIij ( r, t) in terms of the hydrodynamic 
quantities we can write the equation of motion of 
the plasma in the form 

av ( a) v~ ap 
a~+vcrrv=--par: 

+ _1_ [rot B B] + __!_ (fdis + fdis) 
4np • Po 1 2 ' 

where the dissipative force F?is, due to ion-ion 
collisions, is given by 

0~1 J v1 (r, t). 

Here. 

V;; = : Y2:rt I MefN,L (xT1) 1' 

is the effective ion-ion collision frequency ( L is 
the Coulomb logarithm), v~ = K Ti /M, while v~ 
= B~ I 47rp0 is the Alfven velocity. 

Equations (1), (2), and (8) form the complete 
system of magnetohydrodynamic equations for a 
single-fluid nonisothermal plasma with ion-ion 
collisions taken into account. 

When the gradients are parallel to the fixed 

(8) 

(9) 

magnetic field B0 (i.e., when k · B0/B0 = k) 
Eqs. (1), (2), and (8) become the ordinary hydro­
dynamics equations for a nonisothermal plasma 
(i.e., with no fixed magnetic field). Obviously 
the continuity equation (2) retains its form under 
these conditions; using the equation of motion (8) 

we then find 

~ + (v !!....) v = _ v~ ~ + fdis at ar p ar 2 

_L v; .. ;·~ a ~ d ' 1 d" , 
I (231:)2 v 2 xT, ar j r (r- r')2 IV v (r 't), (10) 

where 
azF~is 4 VZ . 
~ =- - 5-povuv2 grad dtv v (r, i). (11) 

We. note that the dissipative term in (8) and (10), 
Fd1S h" h . d t . . 11" . . 2 , w lC 1s ue o 10n-10n co Iswns, 1s a spa-
tially localized quantity and takes account of ion 
inertia; this i.s in contrast with the other dissipa­
tive term F'?-1s, due to Cerenkov and cyclotron 
absorption. This last feature is a consequence of 
the time dependence of P1is [cf. (9) and (11)]. 

3. We now consider the effect of ion-ion colli­
sions on the spectrum of magnetohydrodynamic 
and magnetic-sound plasma waves. In the approx­
imation used here the magnetohydrodynamic waves 
for which v is perpendicular to k and Bo are not 
damped. This result follows because we have neg­
lected terms of order w/Qi in deriving the expres­
sions for the dissipative forces F?is and F?is. 
The magnetohydrodynamic dispersion relation 
is [2,3] 

(12) 

where J is the angle between k and B0• 

The dispersion relation for the magnetic-sound 
waves for which v lies in the plane of k and B0 is 

W 2 =..!.. k2 {v2 + v2 ± [(v2 + v2) 2 - 4v2 v2 cos2 '1'}]'1'} ± 2 A s A s As • 

{1 g(v5)2 1[ (v)4 (v·)2 J-'/2 

X 2 + 8 v A sin2 'I'}+ 8 1 + v: -2 v ~ cos 2'1'} 

X [( 1- (;~y cos 2'1'} )( 4 + 3(;~Ysin2 'I'}) 

+ 2sin2 '1'}(2 + 3(::Y (1 + cos2 '1'}))J}· (13) 

For waves that propagate along the fixed magnetic 
field ( J = 0 ) we have 
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V :rc I e1 I m 2 ¥2 ( V; )
2 

y = - - -k:os+--Vii V . - 8 e M 5 s 
(14) 

We note that w_ and y_ give the frequency and 
· damping factor for the ordinary hydrodynamic 
waves, i.e., waves that propagate in the absence 
of an external magnetic field. 

It follows from (13) and (14) that the collision 
contribution to the damping factor is independent 
of the magnitude of the wave vector. Thus, in the 
approximation used here particle collisions do not 
act to disperse a wave packet in any direction in 
space (do not affect the shape of the packet) and 
only cause an exponential damping in time. Hence 
the spreading of a wave packet is due completely 
to the Cerenkov absorption and is a linear func­
tion of time, as shown in [1]. The spreading rate 
is 

Jf(:rt/8) I eife I (mjM) v •. 

Equations (13) and (14) show that the collision 
absorption becomes greater than the Cerenkov ab­
sorption when 

_!__=A> f. 5 l'it 1 lj.!i_ I!!!__ ("I.!!!._ I!!__)'/, 
k ' 8 V e M e T 1 

where Zi =Vi/Vii is the ion mean free path. In the 
other limiting case, where 

/j e; I m ' I ei I Te )'/, 
1-<{')tv eM ( e T1 , ' 

(15) 

the particle collisions in the plasma can be neg­
lected. Thus, Eq. (15) determines the limits of 
applicability of the hydrodynamic analysis of 
Klimontovich and Silin. [1] 

The appearance of a parameter with the dimen­
sions of length li in the equations of motion (8) 
and (11) gives us some basis for postulating the 
existence of stationary shock waves of finite width 
in the hydrodynamics of a nonisothermal plasma 
with ion-ion collisions taken into account. How­
ever, a simple analysis of Eqs. (2) and (11) for 
the one-dimensional case shows that there can 
be no stationary shock wave with a finite front 
width in the approximation used here. 

4. The dispersion relations (12) and (13) can 
also be obtained by solving the electromagnetic 
dispersion equation: 

I k2611 - k1k1 - w2c-2 Btf (w, k) I = 0. (16) 

The dielectric tensor is computed in the usual way, 
by solving the kinetic equations for the electrons 
and ions with ion-ion collisions taken into account 
and introducing the conditions in (A) and (B). As 
a result we obtain 

0 
(

en 
Bti (w, k) = 0 

0 
(17) 

where* 

wl; Wlt ( . 1 / :rt I e, I m w ) 
Baa= -(;)2 + v~k2cos'~ I+ l v 2 e M kv.jcos~ I 

wi;v;;v~k2 cos'~ 
ro6 

If there is no fixed magnetic field the acoustic 
wave spectrum (14) corresponds to the longitudi­
nal electromagnetic plasma wave spectrum 

e1 (w, k) = 0, (18) 

where 

5. In conclusion we point out the limits of ap­
plicability of the magnetohydrodynamic equations 
obtained above for a nonisothermal plasma with 
ion-ion collisions taken into account. As we have 
indicated, in solving the ion kinetic equation one 
usually makes use of an expansion in powers of 
the collision integral. An estimate of the succes­
sive terms in the expansion shows that the expan­
sion parameter is the small quantity 

~ ( I..!_ I _!j_)''· ~ l. 
t1 e1 Te 

It is evident that (20) is more general than (15). 
The authors are indebted to V. P. Silin for 

discussion. 

(20) 
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