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We have considered the interaction between a non-relativistic particle and a scalar field and 
have applied the theory to the polaron problem. We use a Lee, Low, and Pines canonical trans­
formation to obtain from the Hamiltonian of the system an effective Hamiltonian; we solve the 
corresponding Heisenberg equations of motion. The energy is obtained from a variational prin­
ciple for arbitrary values of the coupling constant. We consider, moreover, the scattering of 
polarons by phonons as a resonance scattering process; we evaluate the value of the resonance 
momentum in the strong coupling region. The strong dependence on the coupling constant g 
which is characteristic for the resonance momentum leads to an upper limit of g2 of about 8 
or 9. 

THE electrons in polar crystals create around 
themselves a localized polarization of the ionic 
lattice, which accompanies the electrons when 
they are transferred to the conduction band. If the 
dimensions of this polarization are sufficiently large, 
one can, according to Pekar, [i] consider the crystal 
in the continuous-medium approximation, taking the 
periodic field of the lattice into account by intro­
ducing an effective electron mass m. The latter 
appears as a basic, unknown parameter in the 
whole theory, and ultimately determines the mag­
nitude of the coupling constant g for the electron­
phonon interaction. This constant is, as a rule, 
insufficiently small to justify the usual perturba­
tion theory, at least of the first perturbation-
theory approximation. 

The simplest and most reliable method for de­
termining the effective mass consists in studying 
the mobilities of the current carriers, which at 
the present time are already known experimen­
tally for a number of polar crystals. To solve 
this problem we need know the mobility as a func­
tion of the coupling constant for a wide range of 
coupling constants. For most polar crystals the 
intermediate coupling range is apparently of most 
interest; this range is at the same time the most 
complicated one from a theoretical point of view 
and the one for which there are in the literature 
greatly contradictory calculations. [2•3] When 
solving the problem of the mobility it is natural 
to start from two extreme approximations in the 
polaron theory, the weak and strong coupling ap­
proximations, with the aim of a subsequent ex­
trapolation of the mobility values found in these 
regions to the intermediate coupling region. 

The scattering of optical phonons by a polaron 
is a typical problem in resonance scattering; [2•3] 

when evaluating the scattering amplitude it is con­
venient to start from Low's well-known method; C4J 
to apply this method we need know the explicit form 
of the eigenfunctionals of the polaron in the initial 
and final states in a form sufficiently convenient 
for the calculation. In this connection, we develop 
in the first part of this paper a new method for 
solving the polaron problem. 

A study of the mobility is also of interest be­
cause it provides an opportunity to establish the 
limits of applicability of the whole polaron theory 
as a physical problem, since the condition for the 
existence of scattering of polarons by optical pho­
nons is at the same time also the condition that 
limits the maximum possible coupling-constant 
values permitted in the theory. Indeed, when the 
coupling constant increases, the effective dimen­
sions of the polaron decrease, and at the same 
time the wavelength of the vibrations of the crys­
talline lattice, which are responsible for the scat­
tering, also decreases. The latter, moreover, 
cannot be less than a quantity of the order of the 
dimensions of the elementary cell, so that not all 
a priori chosen coupling constants are permissible 
in a real physical problem. Even if we make the 
most extreme assumption that the whole of the 
polaron mobility is connected with the scattering 
by the shortest waves existing in the crystal, it 
turns out that the maximum coupling constant 
corresponding to this scattering is approximately 
equal to gkax Rj 8 to 9. 

These values lie at the border of applicability 
of the strong-coupling formulae; the situation is 
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thus just the opposite of the one assumed to occur 
in the first papers on polaron theory: it seems un­
likely that there are polar crystals with strong 
coupling and at the same time with anomalously 
large effective polaron mass characteristic of 
strong coupling. A proof of this statement will 
be given in the second part of this paper, in which 
we consider the scattering theory in the strong­
coupling region. 

1. STATEMENT OF THE PROBLEM AND BASIC 
EQUATIONS 

The polaron energy operator can be written in 
the second-quantization representation in the form 

where ak and ak are the phonon field operators, 
m the effective mass, and w~ the frequency of the 
longitudinal optical phonons; the function Vk is of 
the form 

liw~ ( 4:n: )'/, 
V k = -k- g uL" ' 

where g is the coupling constant, 

e2 (·1 1) 
g2 = 21iwo u fi2 - 8 ' 

k 

(1.2) 

(1.3) 

E is the static dielectric constant, and n the re­
fractive index for light. 

For polar crystals a typical situation is one 
where E, n, and w~ are known sufficiently accu­
rately and the only unknown quantity is the effec­
tive mass m, which at the same time determines 
the value of g: 

(1.4) 

where ~ is the value of the coupling constant for 
the case where the effective mass is equal to the 
electron mass in vacuo, m 0• 

It is well known that we can eliminate the elec­
tron coordinates from (1.2) by using the canonical 
transformation 

where P is the total momentum of the system. 
Having transformed the energy operator using 

(1.5), we follow Lee, Low, and Pines [5] and sub­
ject it to one more canonical transformation: 

U = exp {~ fk (ak -at;)}, 
k 

(1.6) 

where fk is a function of k and ( k • P ) . We can 

write the operator obtained after the transforma­
tions (1.5) and (1.6) in the form 

(1. 7) 

where we take for the effective Hamiltonian H0 [G] 

the expression 

+ 2~ (~ kf%r + J£0. 
k 

:Jf 0 = 2,; hook (P) a; ak 
k 

while the operator H1 is of the form 

H, = 2,; (Vk + fk ·hook (P)) (a,,+ a/;) 
k 

(1.8) 

+ '\;1 kk' f ( + I + + ) + 1 '\;1 kk' + + • ..LJ - k' akakak' , akak'ak ...,----- ..L.l akak'akak', 
k k ' m .. m k' 

' h, (1.10) 

The operator JC0 is a quadratic expression in 
the phonon absorption and annihilation operators 
and can be diagonalized in the usual way. If we 
denote by ~'k the frequencies of the normal vibra­
tions we can write the required polaron self-energy 
~E in the form* 

/j,£ = ~ ~(vk-ook) = -~~ ,d;_ In /j,(s), (1.12) 
k nt c r s 

where we have denoted by ~ ( s) the quantity 

/j,(s) =fl(s-v~) /IT<s-oo~), 
" h 

(1.13) 

and the integration contour C is in the complex 
s-plane (Fig. 1). One can show that 

3 

1:1 (s) =IT D(i) (s), (1.14) 
i=l 

2 'k2f2w 
D (i)()- 1--- ~_!____'!:____!'dk s - (2 )" 2 • n s-wk 

(1.15) 

FIG. 1 

*In the following we put 1i = 1, artd in Sees. 1 and 2 also 
(U~ = 1. 



SLOW ELECTRONS IN POLAR CRYSTALS 1303 

From (1.12) and (1.14) we get for the particular 
case where P = 0, for instance, an expression for 
the energy of the ground state of the operator H0: 

E = - 8
3 . [ ,~- lnD(s) + 2 ~Vkfk + 2] f%, 
lt! J r s k k 

(1.16) 

c 
where according to (1.15) 

(1.17) 

If we moreover denote by O!k the physical­
particle operators in terms of which JC0 is a di­
agonal operator, we can show that [?] 

and that the mathematical expectation of H1 with 
respect to the eigenfunctions A of the operator Ho 
is equal to zero. The operators ak are linear 
combinations of the operators ak of the physical 
particles* 

ak = (M+)wak' + (M:)kk'aZ·, at= (M:)kk'ak· + (M_)kk'ak', 
(1.19) 

where the matrices M+ and M_ are of the form 

(M±)kk' = + (rokrokT'1' (rok ±rok·) (k I Q+ I k1
), 

I I I I 2 ((JJk(J)k')1
/ 2 

(k I Q± I k) =(I (k -k) + kk hh· ( 2 2 +. ) D ( 2) 
00k'- 00k- IB ± 00k 

(1.20) 
The ground state functional Ao satisfies the 

equation O!kAo = 0, and from this it follows that 
A0 is of the form 

A0 = const ·exp { ~ ~~ a'kAkk'ak·dkdk 1
} <1>0 ; 

(1.21) 

The polaron state eigenfunction can thus be approx­
imately written in the form 

1¥0 = exp {i (P- ~ katak) r} exp {~fk (ak -at)}·A0. 
k k (1.22) 

We now determine the form of the function fk 
from the condition that the energy (1.16) be a mini­
mum. Setting the functional derivative of E with 
respect to fk equal to zero we get for fk the inte­
gral equation 

[k =- Vk/(1 + k2(2p.), 
_ 1 rok \ ds 1 

11 = 2ni ~ y5 (s- ro~)D(s) 

(1.23) 

(1.24) 

The method of solving the problem by perturba­
tion theory is evident. It consists in expanding in 
(1.24) the function n-1( s) in a power series and 
integrating afterwards over s. We give here the 

*We sum (integrate) over repeated indices. 

expressions obtained in that way for the self­
energy and for the polaron effective mass: 

E = - g2 -1.26 (g2j10)2 -1.875 (g2fl0) 3 , 

(1.25) 

The result (1.25) for E is somewhat better than 
the one from the path integral method. [S] The op­
erator gives a contribution only to the term in g6• 

2. THE STRONG-COUPLING REGION 

We turn now to the main problem, the strong­
coupling approximation. To elucidate the charac­
ter of the solution in that region we turn to the 
analytical properties of the function D ( s ) . To 
do this we write the function D ( s) in the form 

s- 1 r k4f~rokdk 
D(s) = D(l) + 3Z .\ 2 2 , 

n 0 (rok-1)(rok-s) 
(2.1) 

where D ( 1 ) is the value of D ( s ) at s = 1: 

1 00~· k'f~rok D (J) = 1 + Q=o 1 +- --dk. (2,2) 
3n• ro~ -1 

0 

As a function of the complex variable s, D (s) 
possesses the following properties: 1) D ( s ) has 
a cut along the real axis from s = 1 to oo and has 
notothersingularities; 2) D*(s)=D(s*); 3)as 
s- oo, sD (s) increases at least as s. Because 
of these properties we can write for [(s -1)D(s)]-1 

1 1 \ ds' 
(s -1) D (s) = 2ni .\ (s'- s) (s'- 1) D (s') ' (2·3) 

C+p 

where C + p is the contour of Fig. 2. 
It follows from (2.3) that D-1( s) satisfies the 

integral equation 

_1_ = _1_ -1- s- 1 r k4f%rokdk . (2.4) 
D (s) 1 + Q · 3n• ;} (s- ro~,l (ro~- 1) 1 D (roz) 12 

Integrating by parts we can write Eq. (1.12) for 
D.E in the form 

and using this and (2 .4) we get 

® ' 
c 

p 

7 
FIG. 2 
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Using (2.4) we can write Eq. (1.24) for f.l- 1 in the 
form 

-1 = _1_ _1_C p~f~ (wkwp + 1) dp 2 6 
f.L 1 + Q + 3n2 j (w2 -1) (wk + w ) f D (w2 ) [2 • ( • ) 

0 p p p 

The constant Q introduced in Eq. (2.2) above is 
connected with the renormalization of the charge 
in the following way. Had we written the expres­
sion for the energy operator JC0 in the form 

fff0 = ~ wkatak +'A ( ~ kfk (ak +at) f , 
k k 

the renormalized coupling constant ~ would be 
determined, as in ordinary pair meson theory, [a] 

from the relation 

(2. 7) 

Equation (2.6) is in the general case very com­
plicated and its exact solution almost impossible. 
We therefore evaluate the energy by a direct vari­
ational principle, and put the function fk equal to 

(2.8) 

where a is a parameter to be varied, and where 
one can easily check that for strong coupling a2 

» 1. Substituting (2.8) into (1.17) we find for the 
real and imaginary parts of D ( s ) the expressions 

ReD (w~) = 1 + 'Av (y), 
y 00 

v (y) = 1 - ye-u' ~ e1'dt- ~e~' ~ e-1'dt; 
.0 ~ 

'A=4g2a/3Y2n, y=kla, ~=Yy2 +4la2 • (2.9) 

In the strong coupling region ~ - y, and the ex­
pression for the energy E can, if we use (1.16) and 
(2.5), be written in the form 

~ ?r· (·1·)] g"a( 1\. E =~ l6 a- - I + q T . - Vn 2 - V2 ) , 

00 

Q (y) = 2y2 {(I+ 2y2) yeY'~ e-1'dt -y2}. 

y 

(2.11) 

(2.12) 

In the strong coupling region we put 1/A.- 0. 
As a result of numerical integration we obtained 

for q (O) the value q (O) = 5.75,* and from this 
we get by varying E with respect to a 

E =- 0.105g4. (2.13) 

This energy value is very close to the well-known 
result E = -0.106 g4. [8, 10] The effective Hamilto­
nian H0 chosen earlier thus already contains in it 
the usual strong coupling approximation. 

An electron in the conduction band causes polar­
ization of the ionic lattice. This polarization is 
characterized by the density of the continuously 
distributed charge p <I r- re 1>. which can be eval­
uated from the usual equations (?; = I r- re I> 

4np (~) =- V2qJ (~). (2 .14) 

qJ (~) =-+ ( W(r,), 2: Vk(akeikr +at e-ikr) 1f (r,)) . (2 .15) 
k 

Substituting into (2.15) the functionals (1.22) 
found earlier we get, using the fact that ( A0, aA0 ) 

= 0, the following expression for p: 

( 1 1) aa p(~) = -e2 ___ --e-r.•a'/2. 
n2 8 (2n)'/z 

(2.16) 

The total induced charge e' is equal to 

, . 1 1 ) 
e =-e(no-e . (2.17) 

If we define arbitrarily the polaron radius rp 
as the radius of the sphere inside of which there 
is half of the induced charge (2.17), we get for rp 
the expression t 

2.18 . 1i ''/, 
rp = -a-(2mw) · (2.18) 

3. POLARON SCATTERING. THE MAXIMUM 
VALUE OF THE COUPLING CONSTANT 

One must construct the theory of scattering of 
polarons by optical lattice vibrations as a reso­
nance scattering theory, as was shown convinc­
ingly by Schultz. [3] In the weak-coupling region 
the theory leads to the same results for the mo­
bility as the usual consideration, that is, it leads 
to the equations of Frohlich, Matt, and Davydov 
and Shmushkevich. [1!] 

To calculate the scattering amplitude we use 
Low's well-known method. [4] According to Low 

*It is of interest to note that as >. ... oo the integrand in 
(2.12) has a steep maximum at y4 = 3.\/4; however, if we take 
into account that the domain of integration over y is in fact 
limited and if we use the values g2 = 10 considered in the 
following, this singularity does not arise. 

twe must note that the integration in all formulae is over 
the dimensionless parameter k ('h/mcu)~. We have written 
Eq. (2.18) for clarity in the original system of units [see 
(1.2) and (1.3)]. 



SLOW ELECTRONS IN POLAR CRYSTALS 1305 

we can write the required matrix element of the 
scattering matrix S in the form (ti = 1) 

<P, kiS-IIP0 , k0 ) = -2:tio(E-E0 )R; (3.1) 

R = Vk,Vk ~ dv {(W, e-ikr (H---E -w 0 - iet1 eik,r1f0) 

+ (W, eik,r (H-E+ wo- iefle-ikr1fo)}. (3.2) 

The initial momenta of the polaron and of the 
phonon are respectively denoted by P 0 and k0, and 
the final momenta by P and k; E = P 2 /2m* is the 
polaron energy, and w0 and w are the wave func­
tionals (1.22) of the initial and final polaron states. 

In the following we consider the low tempera­
ture region where P 2/2m * < w0• The only term 
responsible for scattering will in this case be the 
first term in (3.2) which can be evaluated as fbi­
lows. We push consecutively the operators 
exp {i (P0 + k0 - :Ekkakak) r} and 
exp {:Ekfk(ak -ak)} through (H-E- wo -iE )-1 
from the right to the left and integrate the ex­
pression obtained in this way over the volume dv. 
We get as a result 

<P, k IS -1 JP0 , k0) 

=- i (2:rt)4 o (E- £ 0) o (P0 + k0 -P-k)M. (3.3) 

Here 

f.L = m (1-TJt\ T]P = 2: kf%; (3.4) 
k 

H0 and H1 are given by (1.9) and (1.10). 
To evaluate (3.3) we follow Low and Pines [2] 

and introduce a functional n: 

cQ = (H~ + H; -E -w0 - iet1A 0 , 

c = (k~/2m + P0 k0/11-w0 - ie)-1 , 

which satisfies the integral equation 

Q = A0 - (H~-E -w0 - iet1 H;Q. 

We write fl in the form 

(3.5) 

(3.6) 

(3. 7) 

Q = uA0 + 2} vkcrtA0 + 2} W kk'crZcrZ·A0 + . . . (3. 8) 
h k, k' 

In the single-phonon approximation, fl = uA0 

+ :EkvkakA0, we get for the coefficients u and vk 
the following set of equations: 

(3.9a) 

oEkvk = -wpk- u 1}Akk'f:JJk'- ; 2} kk'f"'Akk' 
k' k' 

- ~ 2} kk'!kfk'vh'- ~ 2} Aw{h·k'k"h,vn", 
k' k'k" 

(3.9b) 

where 

If we recognize that (1.20) and (1.21) imply that the 
matrix Akk' can be written as Akk' = (k • k')Q(k, k'), 
the solution of these equations can be written in the 
form 

{ k~ 1 -/ -K + 2U 0 }-1 • 
cu = 2m 1 +I+ K -w (N + T + 1) , 

U =2L+M + (L+S)(L+M), (3.11) 

- (kk')2 , Tk = 2}----p:J Q (k, k ). (3.12) 
k' 

After integrating over the final momenta P and 
k and over the initial momentum k0 we get for the 
probability w for scattering per unit time the fol­
lowing expression 

1 m*P ~ w = - = __ o I vk [4 I cu (k ) 12 e-w,!kT dk . 
,; 8n• " o o (3.13) 

The factor exp (- w0/kT) gives the number of 
phonons per unit volume at low T as a function of 
the temperature T. The function I cu (k0 ) 12 is of 
the form 

(3.14) 

and as P 0 ___.. 0 the integrand in (3.13) has thus the 
form 

lim Po - ~o(A) 
P,-->o A2 + P~ 82 - B ' 

that is, the scattering cross section is determined 
by the magnitude of the resonance momentum 
A (kr) = 0. When g2 """ 1, Eq. (3.13) becomes Low 
and Pines' well-known formula. [2] 

When the coupling constant increases the mag­
nitude of the resonance momentum will increase 
also, and in the strong coupling case the integrals 
(3.12} can thus be evaluated in the limit of large 
k0• In that region the quantities L, M, S, and T 
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are of order g-4 compared to the main terms I 
and N, and the integral K turns out on an estimate 
to be approximately an order of magnitude smaller 
than I. In the strong coupling region we get for the 
resonance momentum, after evaluating the inte­
grals I and N in (3.11), the expression 

kr =a( g2a \'/,('l+27 V2n: +0(-6)). (3. 15) 
Jf2mroo 6 V2n J 8 g2a g 

We now consider the contribution from the two­
phonon terms to the scattering amplitude. If we 
retain in the expansion (3.8) the terms 
~ kk'Wkk'akak' A0 the equation for the coefficients 
Wkk' becomes 

{roo__:__ (k + k'- ko)2} W kk' =- _u_ {(k + k') ko- (kk')} Akk' 
· 2m 2m 

kk' 1 ( 
- '2m (vkfk' + Vk'fk)- 2 Vk(jlk' + Vk'(jlk) 

+ integral terms. (3.16) 

The left-hand side of (3.16) contains the parameter 
k0 squared, and the right-hand side only to the first 
power. If we take this into account, the correction 
terms in Wkk' in Eq. (3.9b) for Vk will be of the 
order k01 ...... g-4 as compared with the terms writ­
ten down in (3.9b). In the strong coupling region 
the two-phonon terms thus make a small contribu­
tion to the scattering amplitude. 

Let us dwell on the problem of the maximum 
values of the coupling constant g of the electron­
phonon interaction. The maximum value of the 
phonon quasi-momentum is kmax = 21r/a0, where 
a 0 is the lattice constant. Since the right-hand 
side of Eq. (3.15) increases as g' in the strong 
coupling region, we can find such values of g that 
the scattering cannot take place at all, for when 
the coupling constant increases the lattice vibra­
tions with the very shortest wavelengths become 
responsible for the scattering. 

The maximum momentum corresponds to a 
wavelength A.= a 0• In that wave all ions in the 
lattice are at the nodes of the wave; it hardly 

Crystal I a 0 , A 

LiF I 4.02 
NaF 4.62 
NaCI 5;53 
NaBr 5:96 
NaJ 6.46 
KCI 6.28 
KBr 6.58 
KJ 7.05 
RbCI 6.54 
RbBr 6.85 
RbJ 7.33 
AgCI 5:54 

nw-10', ev 

8.37 
5,68 
3.21 
2.51 
2.19 
2.61 
2.01 
1.65 
2.21 
1.60 
1.33 
2,41 

makes sense therefore to speak of scattering by 
this wave, which is in actual fact a fictitious one. 
Even if we make the extreme assumption that all 
of the mobility of the polarons is caused only by 
the scattering by a single wave with k = 1r/a0, 

which is already connected with a displacement 
of the ions, this assumption will lead to a rather 
severe limitation on the coupling constant. These 
values were evaluated using (3.15) and are listed 
in the table. 

For most polar crystals the values of gkax 
are thus of the order of 8 or 9. These values ac­
tually reduce to zero the region where the strong 
coupling can be applied, i.e., weak or intermedi­
ate coupling must occur in real crystals. The most 
important consequence following from this is the 
relatively small magnitude of the polaron effective 
mass. Indeed, even if we make the extreme non­
physical assumption that all of the mobility is con­
nected with the scattering by the shortest wave­
length in the crystal, we get an appreciable error 
in the result obtained from the asymptotic formula 
for the polaron effective mass, m */m = 0.020 g8 [s] 

for i'- ~ 8 to 9 (in contradistinction to the en­
ergy): [a] for instance, if g2 ::: 8, the effective 
mass must be less than 30m. 

The restrictions on the permissible coupling­
constant values follow, of course, also from the 
condition that the polaron dimensions must not be 
less than the lattice constant. This criterion leads, 
however, to values of i'- larger than the ones in 
the table and, moreover, this criterion is not so 
well defined as the one we just considered which 
is based upon scattering theory. 

Let us consider some other observations about 
the theory. In all preceding calculations we as­
sumed that the upper limit of integration could be 
taken to be infinite. In the weak or intermediate 
coupling regions this assumption is undoubtedly 
correct since the integrands decrease steeply with 
increasing k, but in the strong coupling region 
this problem requires a more detailed considera­
tion. We already mentioned that the integration 

2r.(~ )-'/•1 ' 
I 

2 

a0 2mwo g, gmax 

10.6 ),2 7.7 
11.2 6.3 8.6 
12.1 5.5 8,4 
12.8 5.0 8.3 
12:8 4.8 8.1 
12.1 5.8 8.6 
13.1 5.7 8.8 
13.5 4.9 8:4 
12,6 6:4 9.1 
14.2 6.7 9.7 
14.5 5:8 9.2 
14.2 3.9 7.8 
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over k means an integration over the dimension­
less parameter k (11/mw0 ) 112• It is clear from the 
table that we can on an average put 
kmax(11/2m0w0 ) 1/ 2 ~ 12, and we then get for the 
typical case when ~ = 5 

Xmax = kmax (njmw0)'!, = 60 Jl2jg2 • 

When evaluating the mtegrals in (2.12) and (2.13) 
we made the change of variable y = x/ a and set 
the upper limit of integration for g2 ~ 9 at about 
y = 3.66. The numerical integration in (2.12) was 
taken up to 3.5, beyond which the integrand was 
vanishingly small. One can thus assume that the 
numerical value for the energy given here is 
basically correct. 

Considering the strong coupling region further, 
we must show the extent to which the operator H1 

is a perturbation with respect to H0• If we use 
perturbation theory to evaluate the contribution 
from H1 to the energy, we can, owing to the fast 
decrease of the function fk at large k, make the 
numerical contribution from H1 small in the range 
of g2 values considered above. At any rate, taking 
the operator H1 into account leads to a decrease 
in the energy, as compared with (2.13), and to a 
smaller polaron radius. The values of gfuax 
given in the table are therefore still undoubtedly 
overestimates. 

It follows from all this that strong coupling 
turns out to be in fact incompatible with the scat­
tering of polarons by optical lattice vibrations. 
Taking dispersion into account has no important 
influence whatever on this result since the large 
k region makes a small contribution to the nu­
merical values of the integrals I and N. As far 
as the already well-known experimental data are 
concerned, they indicate either the use of weak 
(PbS, PbSe) or intermediate coupling ( AgCl, 
AgBr ). [12] The latter crystals are of most in­
terest since the numerical values of the mobility 
enable us in that case to estimate in the most 

direct manner the magnitude of the polaron effect; 
we shall consider these problems later. 

In conclusion I express my deep gratitude to 
Academician V. A. Fock for a number of valuable 
hints and also to Professor H. Lehmann and 
W. Zimmermann for their interest in this paper 
and to Professor G. Hohler for drawing my atten­
tion to Schultz's paper. [3] I am grateful to Pro­
fessor L. E. Gurevich and V. I. Perel' for an in­
teresting discussion. 
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