LEVELS OF THE Si³⁰ NUCLEUS FROM THE Si²⁹ (d, p)Si³⁰ REACTION

K. I. ZHEREBTSOVA, V. F. LITVIN, LIU CHAO-YUNE, and Yu. A. NEMILOV

Radium Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 30, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1761-1762 (December, 1961)

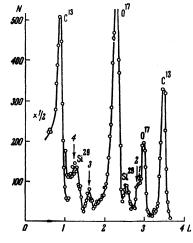
New data on the 8.149- and 8.571-Mev levels of the Si^{30} nucleus are obtained by measuring on a multispectrograph the energy and angular distributions of protons emitted in the (d, p) reaction.

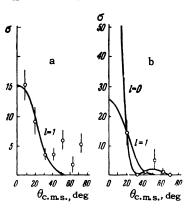
Some new data on the levels of the Si^{30} nucleus were obtained during study of the $\mathrm{Si}^{29}(d, p)$ stripping reaction on a multi-angle magnetic analyzer, the multispectrograph.^[1,2] The bombarding deuteron energy was 6.58 Mev. The 0.5-mg/cm² target was composed of 34.9% Si²⁸, 63.7% Si²⁹, and 1.4% Si³⁰.

Figure 1 presents the proton energy spectrum measured at an emission angle $\theta = 20^{\circ}$.

Because of the insufficient abundance of the isotope Si^{29} in the target, data which we obtained earlier for the Si^{28} (d, p) Si^{29} reaction^[3] as well as the results of Browne and Radzyminski's study of Si^{30} nuclear levels^[4] were used to identify the proton groups.

A number of Si³⁰ nuclear levels discovered by Browne and Radzyminski^[4] were confirmed by us.




FIG. 1. Energy spectrum of protons emitted at $\theta = 20^{\circ}$ (N is the number of proton tracks in the microscope field of vision; L is the coordinate along the photographic plate). Proton groups 1, 2, 3, and 4 correspond to Si³⁰ states with excitation energies $E_1 = 6.630$, $E_2 = 6.734$, $E_3 = 8.149$, and $E_4 = 8.571$ Mev (E values are taken from [4]). Because of the complexity of the proton energy spectrum (presence in the target of C^{12} , O^{16} , and Si^{28} contamination), some of the proton groups from the Si^{29} (d, p) Si^{30} reaction could not be obtained at all angles; angular distributions have as yet been obtained for only two groups, which correspond to the Si^{30} levels at excitation energies of 8.149 and 8.571 Mev. These are given in Fig. 2.

A comparison of experimental and theoretical^[5] angular distributions yielded values for the orbital angular momentum transferred to the final nucleus by the neutron, as well as for final-state spins and parities, which are presented in the table.

The presence in the target of a considerable admixture of Si^{28} allowed us to compare the probabilities of neutron "sticking" in the p-state of Si^{29} and Si^{30} nuclei, since both proton groups were obtained in the same experiment.

The last column of the table gives the neutron "sticking" probability Λ_n , ^[5] taking as unity the

FIG. 2. Angular distributions of proton groups corresponding to various levels of the Si³⁰ nucleus: a) group 3, $E_3 = 8.149$ Mev; b) group 4, $E_4 = 8.571$ Mev. The solid curves are calculated from the formula of Bhatia et al.^[5]

Final nucleus	Excitation energy, Mev	l _n	Possible values, I, 7	Shell model configuration	Δ _n
Si ²⁹ Si ³⁰	4.93 8.149	1	0 ⁻ .1 ⁻ .2 ⁻	$ \begin{array}{c c} 2 & P_{3_{/2}} \\ (2 & S_{1_{/2}})^{1} & (2 & P_{3_{/2}})^{1} & \text{or} \\ (2 & S_{1_{/2}})^{1} & (2 & P_{1_{/2}})^{1} \end{array} $	$1 0.43 \pm 0.20$
Si ³⁰	8.571	1 or 0			

1252

magnitude of Λ_n for the $2P_{3/2}$ state of the Si^{29} nucleus.

Study of the (d, p) reaction on isotopically enriched silicon will be continued.

¹Yu. A. Memilov and V. F. Litvin, Pribory i tekhnika eksperimenta (Instruments and Exptl. Techniques) No. 2, 32 (1960).

²V. F. Litvin, Trudy RIAN (Trans. Radium Inst. Acad. Sci. U.S.S.R.) 9, 141 (1959).

³ Alekseev, Zherebtsova, Litvin, and Nemilov, JETP **39**, 1508 (1960), Soviet Phys. JETP **12**, 1049 (1961).

⁴C. P. Browne and J. T. Radzyminski, Nucl. Phys. **19**, 164 (1960).

⁵ Bhatia, Huang, Huby, and Newns, Phil. Mag. 43, 485 (1952).

Translated by Mrs. J. D Ullman 297