ALPHA DECAYOF Pu²³⁹

B. S. DZHELEPOV, R. B. IVANOV, and V. G. NEDOVESOV

Radium Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 12, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1725-1728 (December, 1961)

The α spectrum of Pu²³⁹ was measured with a double focusing magnetic α spectrograph. Besides the well known α transitions, some new transitions to the excited levels of the U²³⁵ nucleus (104, 198, 224 and 299 kev) have been detected. A possible interpretation of the U²³⁵ levels is discussed. A Pu²³⁹ decay scheme is presented.

We undertook an investigation of the α spectrum of Pu²³⁹ using a double focusing α spectrometer.^[1] Plutonium sources prepared by sputtering in vacuum were used for the measurements. Several exposures were made under the conditions indicated in Table I. In experiments 1–4 the magnetic field was adjusted to make the focusing conditions optimal for different portions of the spectrum.

All the exposures were made at constant instrument aperture, which amounted to 0.21% of 4π for the central point of the source.

Figure 1 shows the α spectrum of Pu²³⁹ obtained in exposures 1, 4, and 5; the measurement results are listed in Table II. In addition to the known α lines $[2^{-4}]$ we observed α transitions to the 104-, 198-, and 299-kev levels (α_4 , α_8 , and α_{11} in Table II). In [3,5] are given data on the existence of an α transition to the 234-kev levels; in this region of the spectrum we see the lines α_9 and α_{10} , corresponding to transitions to the 224kev level and possibly to the 243-kev level. It must be noted that the analysis of the data obtained on low-intensity transitions is considerably hindered by the fact that the spectral lines have long "tails" on the low-energy side.

The transition α_5 is probably connected with the α decay of Pu²⁴⁰ (transition to the 4⁺ level of the daughter nucleus U²³⁶), contained as an impurity in our source; the line α_{12} can be attributed to the presence of a U²³³ impurity.

It is known [6,7] that the ground state of U^{235} has spin and parity $\frac{7}{2}$ (the [743] level in the Nilsson scheme [8] for deformed nuclei). However, the excitation energy of the first singleparticle state of U^{235} is less than 1 kev. In the α decay of Pu^{239} the transition to this level with characteristic $\frac{1}{2}$ [631] is facilitated. On the basis of the α decay of Pu^{239} and the spectrum of the conversion electrons [2,3,5] it has been shown that the levels 13, 51, 84, and 150 kev are

Table I

No. of experi- ment	Source dimensions, mm²	E(r _o),* Mev	Line half-width, kev	Duration of exposure, hours
1	0.5 × 10	5.150	8	1
2	0.5 imes 10	5.138	10	98
3	0.5×10	5.040	10	120
4	0.5×10	4.980	10	150
5	2.0 × 15	4.850	20	85

 $E(r_0)$ – energy of the α particles moving in the given field on a circular orbit with radius $r_0 = 335$ mm (the focusing conditions are optimal for particles with this energy).

members of a rotation band with characteristic $K = \frac{1}{2}^{+}$, and their spins and parities are respectively $\frac{3}{2}^{+}$, $\frac{5}{2}^{+}$, $\frac{7}{2}^{+}$, and $\frac{9}{2}^{+}$.

Calculation based on the formula for the energy spectrum of the rotational band with $K = \frac{1}{2}^{+}$ yields energies of 200 and 302 kev for the $\frac{11}{2}^{+}$ and $\frac{13}{2}^{+}$ levels. One must therefore assume that the lines α_8 and α_{11} which we have observed are due to the decay of Pu²³⁹ to the levels $\frac{11}{2}^{+}$ and $\frac{13}{2}^{+}$ of the rotational band of a state with spin and parity $\frac{1}{2}^{+}$ (K = $\frac{1}{2}^{+}$).

Coulomb excitation of the U^{235} nucleus ^[9] disclosed levels at 46 and 104 kev, which are members of the rotational band of the ground state of the nucleus $(K = \frac{1}{2})$ with spins $\frac{9}{2}$ and $\frac{11}{2}$. The α spectrum shows clearly an α line corresponding to the transition to the 104-kev level. If we assume that this is indeed an α transition to the $\frac{11}{2}$ level of the band with $K = \frac{1}{2}$, then there should exist two other transitions, to the ground state and to the 46-kev level. These, however, are practically impossible to observe, since the former coincides in energy with the transition to the $\frac{1}{2}^{+}$ level, and although the latter differs by 5 kev from the transition to the 51-kev level, its intensity is tens of times smaller, making its observation very difficult.

DZHELEPOV, IVANOV, and NEDOVESOV

FIG. 1. The spectrum of Pu²³⁹ obtained in exposures 1, 4, and 5,

FIG. 2. Proposed decay scheme of Pu²³⁹.

If our assumption concerning the nature of the 104-kev level is correct, the next members of this rotational band should be the 170- and 243-kev levels with spin and parity ${}^{13}\!/_2^-$ and ${}^{15}\!/_2^-$. The 170-kev level was observed earlier and the parity of this state was shown [5] to be negative. According to our data, the 243-kev level apparently also exists, although without complete reliability. The intensity ratios of the 104-, 170-, and 243-kev α transitions do not contradict the assumption that they belong to a single rotational band, but a serious objection to such an identification of the α_4 , α_7 , and α_{10} transitions is the excessive difference in the spins of the initial $({}^{1}\!/_2^+)$ and final $({}^{15}\!/_2^-)$ states of nuclei for the 243-kev level.

Table II

No. of line	Energy of level, kev	Transition intensity, %	Hindrance coeffi- cient		
α	1	72	1.7		
α1	13	17	6.1		
α_2	51	11	5.7		
α3	84	0.038	950		
α4	104	0.030	1030		
α_5	Transition of	Pu^{240} to the 4	⁺ level of (
αs	150	0.018	800		
α7	170	0.008	1290		
αs	198	0,008	860		
α	224	0.008	580		
α10	243?	~0.003	~1200		
α11	299	0.004	360		
X12	U ²³³ impurity (ground-state transition)				
α13	424	0.007	[30		

Naturally, a final solution of this problem can be obtained only if more complete and more accurate data are obtained on the α decay and on the spectrum of the conversion electrons, the latter being very complicated. The proposed decay scheme is shown in Fig. 2.

The authors are grateful to L. L. Gol'din and G. I. Novikova for graciously furnishing the plutonium source for our measurements. The authors are also grateful to V. A. Belyakov and V. N. Delaev for help in the measurements.

¹Dzhelepov, Ivanov, Nedovesov, and Chumin, Izv. AN SSSR, ser. Fiz. **23**, 782 (1959), Columbia Technical Translations p. 780.

²Novikova, Kondrat'ev, Sobolev, and Gol'din, JETP **32**, 1018 (1957), Soviet Phys. JETP **5**, 832 (1957).

³G. I. Novikova, Dissertation, Institute of Theoretical and Experimental Physics, Academy of Sciences U.S.S.R. 1957.

⁴ F. Asaro and I. Perlman, Phys. Rev. **88**, 828 (1952).

⁵ Tret'yakov, Grishuk, and Gol'din, JETP **34**, 811 (1958), Soviet Phys. JETP **7**, 560 (1958).

⁶Strominger, Hollander, and Seaborg, Table of Isotopes, UCRL 1928 (1958).

⁷B. S. Dzhelepov and L. K. Peker, Skhemy raspada radioaktivnykh izotopov (Decay Schemes of Radioactive Isotopes) AN SSSR, 1958.

⁸B. R. Mottelson and S. G. Nilsson, Math. Fys. Skr. Dan. Vid. Selsk. 1, No. 8 (1959).

⁹ J. O. Newton, Nucl. Phys. **3**, 345 (1957); **5**, 218 (1958).

Translated by J. G. Adaslíko 291

1228