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The analytic properties of the one-fermion Green's function and of the mass operator in the 
quantum theory of many bodies are investigated. In particular, the problem of the poles of 
the mass operator is examined. 

WE shall investigate the analytic properties of 
the one-fermion Green's function of a system of 
interacting Fermi particles in the ground state. 
This problem has been treated recently in a paper 
by Luttinger. [1] Luttinger confines himself, how
ever, to the consideration of "normal" Fermi sys
tems, i.e., systems that do not have an energy gap 
in the spectrum of one-fermion excitations. The 
present paper deals with the analytic properties 
of the Green's function for systems of both types 
(both with and without a gap). In particular, a 
study is made of the problem of the connection of 
a gap in the spectrum of the one-fermion excita
tions with a pole of the mass operator of the fer
mion. Also it is shown that one subtraction may 
be necessary for the presentation of the mass op
erator in the form of a dispersion integral. 

For simplicity we shall confine ourselves to 
spatially homogeneous systems, although there
sults we obtain can be extended to the case of in
homogeneous systems. Also we shall assume that 
the number of particles N in the system is very 
large, and accordingly shall neglect all correction 
terms of order N-1 in the quantities considered. 

Let us define the one-fermion Green's function 
by the equation* 

G (x, x') = i <T ('ljl (x) 'ljl+ (x'))). (1) 

Using the fact that G (x- x') depends only on the 
difference x- x', we represent this function as a 
Fourier integral: 

G (x) = _._1 - \ dpdwf!Px-iwt G (p w) 
(2a}4 J ' · (2) 

As Galitskii and Migdal [2] have shown, G (p, w) 

has the integral representation 

*In the literature one often encounters a definition of the 
Green's function which differs from ours in sign. 

0 co 
G (p, w) = ~.· dw' A (p, w') + \ dw' A (p, w') (3) 

.\ w'- w + tc'\ j w'- w- i6 ' 
-co 0 

where w is the energy measured from the chem
ical potential 1-t of the system, and the function 
A (p, w) is nonnegative, i.e., A (p, w) ::::: 0, and 
satisfies the condition 

co 

~ dwA (p, w) = 1 , 
-co 

(4) 

which is a consequence of the canonical commuta
tion relation 

{'ljl" (x, t), 'ljl~ (x', t)} = 6a.!l6 (x- x'). (5) 

We write down Dyson's equation for G (p, w ): 

- a-1 (p, w) =- G;;1 (p, w) + M (p, w). (6) 

Here G0(p, w) is the Green's function of the system 
of noninteracting particles, and M (p, w) is what is 
usually called the mass operator for the fermion. 

Equation (6) is essentially a definition of M (p, w ). 
As is shown in the paper of Galitskii and Migdal, [2] 

(7) 

where EF is the Fermi energy, w0 is the energy 
measured from the Fermi energy, and E (x) 
=xlxl-1• 

It follows from Eqs. (3) and (4) that 

lim wG (p, w) = - 1, (8) 
I"' l~co 

from which, when we use Eq. (6) and (7), we get 

lim w-1M (p, w) = 0, (9) 
I w l~co 

i.e., when the absolute value of w is large M ( p, w) 
can increase, but more slowly than w. It must be 
noted that Eq. (9) restricts the possible character 
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of the increase of M (p, w) at infinity. Indeed, in 
general the function M (p, w) does not necessarily 
have to increase for large w. It can approach a 
constant or even decrease. 

From Eq. (3) there follows an important prop
erty of G ( p, w ) , regarded as a function of the 
complex variable w. First, G*(p, w) = G (p, w* ), 
from which it follows that also M*(p, w)=M(p, w*). 
Furthermore, as is easily verified, the sign of the 
imaginary part of G (p, w) agrees with that of the 
imaginary part of the argument. Following Castil·
lejo, Dalitz, and Dyson, [a] we shall call functions 
that have this property R-functions (see also a 
paper by Ansel 'm and others [4]). It is easy to see 
that R-functions have the following property: if 
H ( w) is an R-function, then - H-1( w) is also an 
R-function. Thus - G-1(p, w) and - G01(p, w) are 
also R-functions. When we now use Eqs. (6), (7), 
and (9), we can verify that M (p, w) is also an R
function. 

This fact enables us to write a general expres
sion for M (p, w) analogous to the representation 
(3) for the Green's function. To do so we first note 
that to the zeroes of the Green's function (if there 
are any ) there correspond poles of the function 
M (p, w ). On the other hand, an R-function can 
have poles only of the first order, and these poles 
must lie on the real axis and have real and nega
tive residues. We readily convince ourselves of 
this if we note that near a pole any function may 
be replaced by its principal part (pole term) at 
that pole. If our function is an :a-function, then 
this principal part is obviously also an R-function. 
It is not hard to verify that an expression of the 
type a ( w- ~ )-n can be an R-function only for 
n = 1, a> 0, and real ~. and from this there fol
lows the assertion made above about the poles of 
M (p, w). 

As has already been noted, the poles of M (p, w) 
correspond to the zeroes of the Green's function. 
It follows from Eq. (3) that G (p., w) can be zero 
only at points at which A (p, w) == 0, since 
Im G (p, w) "' A (p, w) for real ,:.c;, On the other 
hand, as Galitskii and Migdal [2] have shown, 
A (p, w) can be defined in the following way: 

I
~ l(nl'ljl+(O)JC, J2 , ro>O 

A (p, oo) = 
~ I <n I 'ljl (O) I O> 12 ro < o, 
n 

(10) 

where the sum is taken over all stares of the sys
tem which have the momentum p and the energy c...>. 

From physical considerations it is improbable 
that this expression would be zero at any isolated 
value w = w ( p); it is still more improbable that 

the function Re G (p, w) would simultaneously 
vanish at w = w(p ). In any case, we cannot indi
cate any reasonable physical ideas corresponding 
to such a situation. Therefore in what follows we 
shall assume that the zeroes of the Green's func
tion can lie only in regions of values of w where 
A (p, w) = 0. 

It also follows from Eq. (3) that in these re
gions G ( p, w ) is continuous and has a continuous 
positive derivative. Therefore in each region of 
values of w where A (p, w) = 0 there can be not 
more than one zero of the function G ( p, w ) • We 
shall assume that A (p, w) can be zero only in a 
region near zero, i.e., for values of w in the 
range 

- ~- (p) <w < ~+ (p); ~± (p) > 0, (11) 

and it follows from Eq. (10) that to this there cor
responds a gap in the spectrum of the one-fermion 
excitations [the connection between the pole of 
M (p, w) and the gap in the one-fermion spectrum 
has also been investigated by Migdal [5]]. 

Thus we must consider two cases: 1) there is 
no gap in the spectrum of the one-fermion excita
tions, and 2) there is a gap in this spectrum. 

To begin with, let us consider the first case 
(the only one treated by Luttinger [1]). Assuming 
that M (p, w) increases with increasing w, we 
have 

0 

M (p, oo) = M (p) + oo ~ dw' ro' (:_(~=~il)) 
-oo 

00 

+00 \' d , a. (p, ro') 
J 00 ro'(ro'-ro,-i6)' 
0 

where M (p) = M (p, 0) is a real quantity, and 

(12) 

a (p, oo) = 8 (oo) Im M (p, m) > 0. (13) 

It is easy to obtain this expression if we make use 
of the following fact. The Green's function G (p, w) 
is the limiting value of the function defined by Eq. 
(3) (if we regard it as a function of the complex 
variable w ) as w approaches the real axis from 
above, if w > 0, and from below, if w < 0. It is 
obvious that M (p, w) must have this same prop
erty. Applying Cauchy's theorem to w-1 M (p, w) 
and taking C1 as the path of integration, we get a 
function whose limiting value as w approaches the 
real axis from above coincides with M (p, w) for 

@ 
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w > 0 (Fig. 1). Then taking as the path of integra
tion the contour C2 of Fig. 1, we get in a similar 
way an expression for M (p, w) for w < 0. These 
two expressions are combined in Eq. (12), if we 
use the fact that M*(p, w) = M (p, w* ); it is easy 
to see that a(p, w) must be positive in order for 
M (p, w) to be an R-function. [3, 4J If, on the other 
hand, M (p, w) remains bounded (or decreases) 
as w increases, then in just the same way, apply
ing Cauchy's theorem to the difference M (p, w) 
- M (p, oo), we get 

0 

M ( ) - M ( ) _L \ d ' a. (p, ro') 
p, w - P ' .\ W w'- ro + i6 

00 

+ \ dw' a. (p, w') 
.\ ro'-ro-t6' (14) 
0 

where M (p) = M (p, oo) is real and a(p, w) > 0. 
Let us go on to the second case. The expres

sion (3), regarded as a function of the complex 
variable w, now defines a single analytic function 
in the plane with cuts from - oo to -D._ (p) and 
from .6.+ (p) to oo. Therefore M (p, oo) must also 
be an analytic function of oo in the plane with the 
same cuts. Applying Cauchy's theorem to the 
function M (p, w) ( w- w1 ) -t and integrating along 
the path shown in Fig. 2, we get as an expression 
for M (p, w) 

M (p, w) = M (p, w1) + i\~ [(wp- wt1 - (wp- w1t 1l 
- .6-(P) 

+ ~ dw'a(p, w')(ro,_~+ it! 
-00 

00 

+ ~ dw'a(p, w')(w'-~-i6- ro'~roJ' (15) 
A+(P) 

where 6~::::: 0, -D._(p) < wp < D.+(p), a(p, w) > 0, 
and 6~- 0 if D.±(p)- 0; the function M (p, w1 ) 

is real, and w1 is an arbitrary quantity lying in 
the interval from -D._ (p) to D.+ (p ). In particu
lar, we may set w1 = 0. 

In this expression we have taken account of the 
fact that, as was shown earlier, M (p, w) can have 
a pole in the region where A (p, w) = 0, and that 
the residue at this pole must be negative. If 
M (p, w) remains bounded for large w (or de
creases), then Eq. (15) can be replaced by the 
expression 

()() 

\ dro'a. (p, ro') 
+ .\ w'-w-i6' 

.6+ (p) 

(16) 

where M (p) is real, and the conditions satisfied 
by 6~, a(p, w ), and wp are the same as before. 
We note further that a necessary and sufficient 

condition for the existence of a pole of M (p, w) 
are the inequalities 

G (p, - 11_ (p)) < 0, G (p, 11+ {p)) > 0. (17) 

It is interesting to consider as an example the 
problem of the form of the Green's function and 
the energies of the elementary excitations in the 
case in which we can confine ourselves to just 
the pole term and a constant term in the expres
sion for M (p, w ). As is well known, the spectrum 
of the elementary excitations is determined by the 
zeroes of the expression (6). In our approximation 
we get from this condition 

w2 _ w (wp + ~p) + Wp~p - i\~ = 0. 

~P = ~P- ilf.t- M (p). 
(18) 

Solving this equation, we have 

8"ff = f [wp + ~P ± Jf(wp- ~P )2+ il~]. (19) 

where Ep is the energy for particles, and Ep is 
the energy for holes. It can be seen from Eq. (19) 
that Ep > Ep and equality, Ep = Ep, is impossible, 
provided only 6~ is not zero. The minimum of 
the difference Ep- Ep gives the width of the energy 
gap in the spectrum of the one-fermion excitations. 

The Green's function is obviously of the form 
u+ 

G (p w)- P , -- ++.6 ro-eP t 
(20) 

aM I (wP- ep±)2 
u± =(1 + -)-1 = ----'----.,....-'---::--

P aro Ol=<± (w _ e±)2+tJ2 ° p p p p 
(21) 

The number density of the particles in the system 
is given by the equation [2] 

00 

n = (2!)3 ~ dp ~ dwei"'8G (p, w) = (2!)3 ~ dpu- {p), (22) 
-oo 

which can be regarded as an equation for op.. 
If the spectrum of the system is symmetrical, 

i.e., if the energy of a particle, taken as a function 
of the momentum, differs only in sign from the en
ergy of a hole, then obviously Wp = -l.:p, and all 
of the expressions have particularly simple forms: 

8+ =- 8 = .. r~2 + {)2 = 8 p p r p p P• 

u:= (8p ± ~p) (28pt1; u; + u; = 1. (23) 

For op. = 0 and M (p) = 0 these expressions take 
the form that they usually have in the theory of 
superconductivity (cf. the paper by Gor'kovC6J). 
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In the general case the Green's function has 
poles in the complex plane, whose positions deter
mine the energies and dampings of the elementary 
excitations. These poles lie on a sheet of the ana
lytic function G ( p, w ) different from that defined 
by the expression (3). For partic:les we have at 
the pole Re w > 0 and 1m w < 0, and for holes the 
opposite signs. Using this fact and separating off 
the pole terms, we have 

__ u _ __,_ ('-'P). • -q> (p, oo), (24) 
oo +ep _.,rP · 

where cp (p, w) has no singularities of the pole type, 
Ep and rp are the energy and damping for par
ticles, and Ep and rp are those for holes; 

u±(p) = 1+- . ( iJM )-1~ 
iJoo "'= ± <•~ -irff> 

(25) 

Obviously as the momentum increases the en
ergy of an elementary excitation must approach 
the energy of a free particle. In this case the 
imaginary part of the energy of an elementary 
excitation, i.e., the damping, is of the form 

r;=m~ (p, ~p). (26) 

In conclusion the author expresses his gratitude 
to A. A; Ansel'm, V. N. Gribov, G. S. Danilov, and 
I. T. Dyatlov for helpful discussions. 
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