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We apply quantum field theory methods to find the collective excitation spectrum of a super
conductor. We use the possibility to formulate superconductivity theory as a one-dimensional 
relativistic problem. We construct the Bethe-Salpeter equation for two-particle Green's func
tions, whose poles determine the excitation spectrum, in the weak coupling approximation. We 
obtain for a system of neutral particles a sound wave branch which does not terminate at mo
menta k of the order .C., but continues into the large momentum region, and the excitation en
ergy approaches 2.0. exponentially. In the case of charged particles the plasma oscillation 
dispersion is changed very little by superconductivity. We find a set of excitations with non
vanishing momenta; for small k their energy is close to 2.0., differing by an amount quadratic 
in the coupling constant. For each non-vanishing component of the angular momentum along k 
there is one branch of the excitation spectrum which does not terminate for small k. In the 
large-momentum region, the energy of these excitations approaches 2.0. exponentially. 

1. INTRODUCTION 

THE recently developed theory of superconductiv
ity is based upon the existence of a bound state of 
particles near the Fermi surface. The presence 
of this bound state leads to a gap in the single
particle excitation spectrum, since such excita
tions indicate the break-up of a bound pair. Apart 
from the single-particle excitations excited states 
corresponding to the motion of a pair can occur in 
the spectrum of superconductors. The interaction 
between the moving pair and the other pairs leads 
to the propagation of a collective excitation in the 
medium of the bound pairs. It is essential here 
that in excitations of this nature the particle pairs 
act as units in contradistinction to the situation in 
single-particle excitations. A study of the collec
tive excitations is important to ascertain the sta
bility of a state and the existence of superconduc
tivity in it, for this requires that the appropriate 
criterion be satisfied by all branches of the spec
trum. The collective excitations may also be im
portant for the electrodynamics and the thermody
namics of superconductors. 

The collective excitations of this kind may be 
considered to be bound states of two particles or 
quasi-particles with a non-vanishing total momen
tum. If the interaction between particles is non
vanishing only in the S-state, then only one kind 
of collective excitations with vanishing angular 
momentum is possible. This excitation is a sound 
wave in the electron system and changes into a 

plasma oscillation with a larger frequency when 
the Coulomb interaction is taken into account. 
Turning on an interaction with higher harmonics 
leads to the appearance of a number of branches 
of the spectrum with different angular momenta. 
Long-wavelength excitations of this kind were con
sidered by Bogolyubov [i] and by Bardasis and 
Schrieffer. [2] 

In the present paper we use Green's functions 
to study collective excitations. We consider the 
case of zero temperature. Treating the excita
tions as bound quasi-particle states enables us to 
determine their spectrum from the poles of the 
two-particle Green's function. We use for the 
evaluation of this function a method based upon 
the formal resemblance of our problem to a one
dimensional relativistic problem; the role of the 
mass is played by the magnitude of the gap, .C., 
and that of the only spatial momentum is played 
by the nearness of the particle energy to the en
ergy at the Fermi surface. We find the limiting 
frequencies and the dispersion of the oscillations 
with arbitrary angular momentum l in the long
wavelength region of the excitations; the results 
are the same as those obtained earlier by other 
methods for particular cases. We use the ex
ample of excitations with l = 1, m = 0 to study 
the spectrum w(k) near its endpoint w = 2.0.. We 
show that there are a number of branches of os
cillations in the region of relatively large wave 
vectors. These branches may make an appreciable 
contribution to the electrodynamic and thermody
namic properties of superconductors. 
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2. THE RELATIVISTIC FORMULATION OF 
SUPERCONDUCTIVITY THEORY 

We write the Lagrangian 2 ( x) in the form 

~ 2 (x) dx = ~ dxu+ (x) (i tt + 2~ ! 2 + fl) u (x) 

+ -} ~ dx dy u+ (x) u (x) D (x- y) u+ (y) u (y). (1) 

The spinor u ( x) is here the electron field oper
ator, x = (x, t) = (x,x0 ), dx = dxdx0, and J1. is the 
chemical potential. In the case of an interaction 
through a potential, the function D is of the form 
D(x-y) = V(x-y)o (x0 -y0 ). For an electron 
interaction retarded by the exchange of phonons, 
D is the phonon Green's function, [SJ which in the 
zeroth approximation is equal to 

D0 h (x) = (2n) -4 \' dkdweikx ~;2;..0 ~, (:2) 
P l ~F~-~ 

where Wk is the phonon frequency, PF the momen
tum at the Fermi surface, and ~0 > 0 Frohlich's 
parameter. [4] 

If we write the interaction in this form we can 
at the same time take into account both the direct 
Coulomb interaction between the electrons and the 
interaction through the phonons, so that for the 
complete problem we have 

e2, 
D(x-y) =Dph(x-y)--

1 
--1b(xo-yo). (3) x-y 

It is well known [5] that when there is supercon
ductivity we must use three kinds of Green's func
tions: 

;ga.ll (x- y) = (Tu" (x) u~ (y)), 

F a.ll (x- y) = (Tua. (x) Uf> (y) ), 

F;;:ll (x- y) = (Tu~ (x) ut (y)); Fa.+ll (0+) =-Fall* (0+). 

(4) 

Here a and {3 are spinor indices; the average is 
taken over the ground state of the Lagrangian (1). * 
It is convenient to write the functions ;g, F, and 
F+ in the unified form ( Tu1•2(x) u1•2(y)), where 
u1(x) = u (x) and u2(x) = u+(x). To do this it is 
natural to combine the operators u and u+ into 
one operator lj! (x) with components l/!1 = u1/2, 
l/!2 = u_1/ 2, l/!3 = - iu~ 112 , and lj!4 = iui/2, or, in 
"split" form 

1 tt (x) ) 
'ljJ (x) = \ cr u+ (x) ' 

' y 

(5) 

*Because we have introduced the term ILu+u into the 
Lagrangian (1), the functions F and F+ depend only on the 
difference x-y, in contradistinction to[s]. 

where ay is a Pauli matrix. This enables us to 
give the theory a relativistic form. We introduce 
four-by-four matrices 'Yi: 

( 0 i 
rs = - i 0). 

( 1 0) C (ay 0 ) rl = 0 1 ' = 0 -au 

and the operator ijJ (x) = lj!+(x)y4• The matrices 
'Yi satisfy the usual anticommutation relations 

(6) 

{rs, r4} = {rs, rs} = {r4, rs} = 0, r~ = r~ = r~ = 1. 
(7) 

We define the Green's function, as usually, by 

G (x- y) = i(T'IjJ (x \ji (y)). (8) 

We can write the matrix G in expanded form: 

I 
F (x::_ y) cry 

G (x- y) = i -:-§(y-x) I· (9) 

In the notation of (5) and (6), the Lagrangian (1) 
becomes 

~2 (x) dx=-f ~ \ji (x)p'ljJ (x) dx 

-} ~ dxdy\ji (x) rs'I!J (x)D (x- y) qi (y) rs'I!J (y). (10) 

Here 

In the momentum representation the Green's func
tion for non-interacting particles can be written as 

(11) 

where 

In the following we shall be interested in the 
values of all quantities only near the Fermi sur
face. In that region we can divide the integration 
over d~ = ( 21r) _, dp dp0 into integrals over the 
angles of the vector p and a double integral over 
p 3 and p 0: 

d4 _ p2dp dQ dp0 ~ P Fm dQ dpa dp0 = dQ d2 ( 12) 
P - (2n)4 ~ 2n2 4n 2n - P 4n P 

(where p = ( 21r2 ) -t mpF is the level density near 
the Fermi surface), and the integration over the 
angles can be left to the last. This is the form of 
a one-dimensional relativistic problem, so that 
we can use the well-developed technique of rela
tivistic calculations. 

We write Dyson's equation for the Green's fun
tion in the usual form 
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G (p) = G0 (p)- G0 (p) ~ (p) G (p), (13) 

where ~ is the self-energy part. From (13) we 
have 

G (p) = ll(ip + ~). (14) 

In first approximation 1: is determined by the dia
gram of Fig. 1 and is expressed by the equation 

1: (p) = - i ~ r3G (p') raD (p- p') d4p'. (15) 

The non-diagonal elements of 1: are in this ap
proximation reduced to a renormalization of the 
chemical potential and the particle mass. We shall 
assume that this renormalization has taken place 
so that p3 = p2/2m* - u*, where m* and /J.* are 
the effective mass and chemical potential. For 
what follows, the diagonal elements of the matrix 
1: are important since they determine the gap in 
the energy spectrum. If we denote this diagonal 
part by 6. we have from the definitions (9) and (4) 

h (A 0 ) 
A = 0 A• • (16) 

£=~ __ ... 

FIG. 1 

The phase constant in A can be chosen arbitrar
ily and below we shall assume A to be real. G (p) 
is then of the form 

(17) 

The single-particle excitation spectrum is de
termined by the pole Po= (p~ + A2 )1fl of G (p ). 
From (15) we have for A the equation 

A=- i~D (p- p') p'•~ A•d4p'. (18) 

With logarithmic accuracy, the region near the 
Fermi surface is the important one in Eq. (18). 
In that region D depends only on the angle between 
p and p': D(p-p')=D(n•n'), n=p/p, n'=p'/p'. 
Assuming that the attraction in an S-state predom
inates in the interaction in D we find that A is in
dependent of the angles and satisfies the relation 

(g0 =p~D(nn')dn'/4n). (19) 

If we cut off, as is usually done, [6•1•5] the logarith
mically diverging integral at the limiting phonon 
frequency wD, we get for A the well-known equa-
tion ' 

(20) 

More complicated diagrams entering into 1: give 
terms of order WDI!J. « 1 or terms in which the 
degree of the logarithm is less than the degree of 
the interaction constant, for instance, g~L, [T] so 
that if g0 « 1 it is sufficient to limit oneself to 
the simplest diagram of Fig. 1. When the inter
action is not too weak we must replace the dotted 
line in Fig. 1 by an irreducible four-pole (see, 
for instance, [SJ). 

3. TWO-PARTICLE GREEN'S FUNCTIONS 

The collective excitation spectrum is deter
mined by the poles of the two-particle Green's 
function which in our case can be written as a 
matrix 

K (1, 2; 3, 4) = i (T'IJ (1) \jJ (2) '11 (3) f (4)). (21) 

Dyson's equation for K is of the form 

K =- iGG- iGG~ rK d-r, (22) 

where r is an irreducible four-pole. [9• 10] Instead 
of looking for a pole in the solution of the inhomo
geneous integral Eq. (22) we can find the condition 
that the corresponding homogeneous equation be 
soluble. [10•11] The kernel of this equation is inde
pendent of the variables 3 and 4, and we shall 
therefore not write these variables out explicitly 
inK: 

K (1, 2) =- w (1) G (2) ~ r (1, 2; 1', 2') K (1', 2') d-r1·d-r2·· 
(23) 

In the weak-interaction approximation it is suf
ficient to limit oneself for the four-pole r to the 
lowest order diagrams: 

P, Pt 

>-----<. (24) 
Pz , , Pz 

If we _change in the equation for K/J.v(PtPa) = 
(lf;/J.(p1) 1/!v(Pa)) to the variables k = p1-p2 and 
p = (p1 + p2 )/2 we can write (23) and (24) in the 
form 

K"v= ~ [(G(p+ ~)ra),P(rsG(p- ~)t 

+(CG(-P+ ~)ra\p(raG(-P- ~)\J 

X ~ d4p' (D (p- p') Kpa (p', k) 

--i-D(k)r~aSpy8K(p', k)), (25) 
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where C is given by (6). The integral equation (21>) 
has a solution only if there are well-defined rela
tions between the energy k0 = w and the momentum 
k of the excitation, and these determine the energy 
spectrum w(k). The variable p characterizes the 
relative motion of the particles in the excitation. 

One can expand the matrix KJ.Lv in terms of 
any arbitrary set of 16 linearly independent mat
rices. We write this expansion in the form 

Kp.v = Ktr~v + l<t'(~v· (26) 

The yi are given here by Eqs. (6) and the yi are 
obtained from the yi by replacing the two-by-two 
unit matrices by the Pauli matrices u: 

'fl=(~ ~). 

'(4 = (~ ~). 

( 0 io) 
'( 3 = ·- io 0 ' 

(6') 

The Ki describe the excitations with spin zero and 
the Ki those with spin unity. 

The presence of two G's in Eq. (25) leads to the 
fact that only values of the variables p and p' near 
the Fermi surface are important in (25). We noted 
earlier that in that region 

D (p-p') =D (nn') (n = pjp, n' = p'jp'), 
d4p = p (dQ I 4n) d2p. 

Integrating (25) over d2p we get for the functions 

K' (n, k) = ~ d2pK' (p, k), ~a. (n, k) = ~ d2pl('a. (p, k) 

the equations 

K' (n, k) = P'· '(w, nk) p ~ D (nn') !(' (n', k) ::· 

- 2P'· 3pD (k) ~ 1(3 (n', k) :~· , 

K'a. (n, k) = P'"· ''~ (w, nk) p ~ D (nn') l('ll (n', k) ~~ (27) 

(a,{J=x,y,z). Here P(w,n·k) is.oftheform 

P'·' = ~ Sp~d2p[rP(P+ ~)r3r,raG(p- ~) 

+Crpa(-P+ ~)r3r,r3G(-P- ~)]. 

pia.,r!l = ~ Sp ~ d2p [ r'a.G(p + ~ )ur'llr3G(p- n 
+Cr'"CG(-P+ ~)r3r'llraG(--P- nJ. 

Using the equations (i = 1, 3, 5) 

cY;c = r,. cr, .. c = - r,ll. 

(27') 

and noting that the trace in pia,r{J is proportional 
to o a{3 so that we can replace the matrices 'Yi 
under the trace sign by Yi• we find 

P1·' = +(n'' (n) + n'' (-n)}, 

pia.,rfl= ~a.ll~(IT1'(n)-IT''(-n)} (i= 1, 3, 5); 

P 4'' = + (ll4' (n)- ll4' (- n) }, 

p4rt, r{l = ~ .. p., ! (n4r (n) + n4r (- n)}, (28) 

where 

IT1' (w, nk) = ~ Sp ~ r'G (P + ~) r3r'r3G(p- ~ )d2p. 
(28') 

The parity of the function P (n) determines the 
parity of the angular momentum of the correspond
ing excitation. In the following we shall for the 
sake of simplicity drop the index a of the functions 
Ki, a and denote all functions simply by Ki. The 
spinor structure of the excitation for the functions 
Ki with i = 1, 3, 5 is then given by the first term 
in (26) (spin 0) for even angular momentum, and 
by the second term (spin 1 ) for odd angular mo
mentum. For the function K4, on the other hand, 
even angular momenta correspond to spin 1 and 
odd angular momenta to spin 0. 

The quantities rrir are evaluated in the appen
dix and given by Eqs. (A.9). In order to change 
from the integral Eq. (28) to an algebraic equa
tion we expand Ki ( n) and D ( n • n' ) in powers of 
spherical harmonics:* 

K' (n) = ~ K}mYim (n); 
lm 

4~ pD (on')= ~gl Cis~ 1?' Pt (no')= ~glylm (n) v;m (n'). 
I ~ ~~ 

If we choose the z axis along k, the z compo
nent m of the angular momentum will be an inte
gral of motion. If we substitute into the set of 
Eqs. (28) the explicit form of the quantities 

we get 

Kfm = ~g1, [<L + ~2f)u,mKl,m 
I, 

1 

*We use the normalization ~ P~m (x) dx = 1. 
-1 
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+ 26 oD (k) \. f -"- q;- q!f ) K.s m01 , 2 oo, 
q 100 

K.J - "' r 1 ( f) K.5 ( qa - qsf) 3 lm- Lg1,l-2~ q3 ll,m l,m-q4 --2- K.t,m 
1, L · q ll,m 

+ 2bmoPD (k) q ( qa- qsf) K.s . 
~ q2 /00 00 

K.}m = ~gl, (L- f + ~2{)u,m K.},m. ,, 
Here we have (see appendix) 

q3 = knv, 

f (~) = arc sin ~ . 
f3 "Vt- ~2 

{30) 

(31) 

Since II55, II53, II33 , and II44 are even functions 
of (k·n), and rr45 and rr43 are odd, Eq. (30) con
nects the even harmonics Kl and K~ with the odd 
harmonic K1 and vice versa, so that we can sepa
rate the equations for even and odd l. It is also 
clear from (30) that one can separate the equation 
for K1 from those for K3, K4, and K5• One veri
fies easily that when k ;<! 0 the equation for K1 

has no non-vanishing solutions so that we shall 
not consider K1 in what follows. 

4. THE CASE k= 0 

When k = 0 the coefficients rrik are independ
ent of n so that 

ik ik Du,m = bu,Dum 

and the equations for different l become separate 
ones. We consider first S excitations. In the case 
of neutral particles D (k) is finite when k = 0. The 
quantities II45, II43, II44 , and hence also K4, van
ish so that (30) becomes 

ro2 fK.s iw ( ( a go 4a2 oo + '2:5: f go- 2pD w, 0)) K.00 = 0, 

go~~ fK.go-(l+gof-2fpD(w,O))K.g0 =0. (32) 

Equations (32) have a solution Kg0 = 0, KSo ;<! 0 
when w = 0. This solution corresponds to the usual 
sound wave excitations [1•12•13] which are discussed 
in the next section. 

We find now the limiting frequencies of the os
cillations with l ;<! 0. We can put Eq. (30) in the 
form 

{33) 

If we put the determinant of (33) equal to zero, we 
find[i] 

(1-g,L) (l + gtf)- g1w2f I 4~2 = o. (34) 

If g~(go-gz)- 1 « 1 the value of w is close to 2a 
and f(w/2a) RJ %rr(l-w2/4a2 )-112, and thus 

(35) 

where 

a,= f:ngy(go-g1t 1• (35') 

Equation (35) shows that for any small g1, re
gardless of its sign, a bound state of two quasi
particles exists with a binding energy ...... aa~. One 
can understand the existence of this level as fol
lows. For the az considered, which are very small 
compared to unity, the energy of the system is 
close to 2a so that _the problem becomes a one
dimensional non-relativistic one. It is well known 
however, that in that case there is always a bound' 
state for the particles, however weak the interac
tion [14]; to be sure, it does not follow from this 
simple picture that the result is independent of 
the sign of gz. 

If one of the gz is very close to g0 so that 
g~(g0 -gz)- 1 » 1, then w is close to zero, f = 1, 
and 

If gz > g0 the value of w2( 0) given by (36) be
comes negative. The presence of excitation with 
an imaginary frequency in the system means that 
the original state is unstable with respect to these 
excitations. In the present case this indicates the 
instability of a state with S-pairing. The stable 
state will be the one in which pairing occurs with 
angular momentum l. [2,15] 

We note that the instability of the normal, non
superconducting state (a= 0) can also be ascer
tained from the form of K. [16] Putting a = 0 in 
(30) we find that the equations for K~0 and KSo 
are the same and have a solution when 

go w1 
l = 2 In(-w2)· 

(37) 

The change in the state caused by this instability 
leads to the appearance of the gap a in the single
particle excitation spectrum, while the frequency 
of the collective excitations becomes equal to zero 
[see (32)]. 
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5. SOUND WAVE OSCILLATIONS (l = 0) K5 (1 + R2f) Ks iw t ( a oo = goc- oo oo + 2Ll oo go- 2pD (k))K00 , 

We consider excitations with l = 0. In that 
case we find that in the first of :Eqs. (30) the quan
tity Kg0 occurring on the left-hand side cancels the 
logarithmic term g0LKg0 on the right-hand side. 
The subsequent considerations are different for 
systems of neutral or of charged particles. For 
neutral particles D ( k) is finite for small k and 
in the first of Eqs. (30) we can drop all terms 
apart from those involving Kg0, if our accuracy 
is to terms of the order g0 or g1. * The disper
sion equation becomes of the form 

I 

~ (w2 - k2v2x2 ) f (~) dx = 0. (38) 
-1 

Using (A.10a) and (38) we get for kvl2.6. « 1 [1,12,13] 

(39) 

It turns out unexpectedly that Eq. (38) has also 
a solution when kvl2.6. » 1. This is connected with 
the fact that if w is near to 2.6. the integral of the 
first term in (38) is logarithmically large when we 
take the region of small x into account. Using the 
limiting expressions (A.10b) and (A.10c) for f we 
find 

n~ 4~2 ( ku ) 
2vk In 4~'- wz- In X""-- 1 = 0, (40) 

and hence 

2 A ( :2kv kv) 
1..1 -w = tl exp ---In-. 

:n:~ ~e 
(41) 

It is not difficult to find the corrections of the 
order of magnitude of the interparticle interaction 
g. For instance, in the region of small k we can 
rewrite Eq. (39) as follows, if we take these cor
rections into account, 

If the interaction is non-vanishing only in the 
S state, then g1 = 0, pD ( 0) = g0, and (39') is the 
same as Anderson's result. [12] 

The branch found here is the sound wave branch 
in the system of electrons. This branch goes there
fore over into plasma waves in a system of charged 
particles. In that case the function D (k) 
- - 4'11'e2 lk2 - - oo as k- 0. One must therefore 
also take into account terms in K~o in the set (30). 
Dropping terms of order gz we get 

*For large kv » tl the corrections to Eq. (38) are of the 
magnitude"' g ln (kv/tl). In accordance with the basic ap
proximations in the theory we restrict ourselves to the region 
kv « wn when g ln (kv/tl) « 1; one can find the correction 
terms using perturbation theory. 

(42) 

Solving (42) for kvlw « 1 and taking into account 
that then also .6.1 w « 1 we get the following expres
sion for the frequency 

(43) 

If we take gz into account the equation for w2( 0) 
will be of the form 

or, if we use the expression for the effective mass 
m* = m (1 + g1),C17J 

w~ (0) = 4nne2/m = w~1 • (44) 

The plasma oscillation frequency (44) has thus 
the same value as for a free electron gas. [12,1] 
This result is physically clear since the frequency 
of the long-wavelength oscillations which occur be
cause of the long-range Coulomb forces cannot be 
changed by the presence of finite-range forces in 
the system. We neglect the influence of these 
forces on the dispersion (43), for when .6./w « 1 
the corresponding corrections will be the same 
in superconducting and in non-superconducting 
systems. 

6. EXCITATIONS WITH NON-VANISHING ANGU
LAR MOMENTUM AT SMALL k (l ~ 0, 
kv « 0!1.6.) 

When k ~ 0 the degeneracy with respect to the 
component m of the angular momentum along the 
direction of motion is lifted. When kv « a 1.6. the 
splitting is small and the distance between the 
levels having different m but the same l is small 
compared with the distance between levels with 
different l. In that case l is a good quantum 
number and the set (30) can be solved, as before, 
as a set of independent equations for different l. 
One verifies easily that the influence of neighbor
ing harmonics leads to corrections in the disper
sion which are small either in the interaction con
stant or in the parameter ( kv I a 1.6. )2 « 1. When 
there is Coulomb interaction we must consider 
more carefully the case l = 2, m = 0, but one can 
verify that also in that case the correction is pro
portional to g. Taking into account the fact that 
w is close to 2.6. and neglecting terms k2v2 com
pared to terms k2v2 I a 2 we get 
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Kfm = igtfumK1m- gzfumKfm• (45) 

If we use (A. lOb) we get from the condition 
that (45) be soluble for w2(k) the following ex
pression 

W~m (k) = M 2 (1- ct7} + ~ k 2V2 (1 + 2C~~. toC~~tm), (46) 

where C are Clebsch-Gordan coefficients. In par
ticular, we get from (46) when l = 1 

roio (k) = roj (0) + -i k2v2 , roi. ±l (k) = roi (0) + ~ k2v2 , (47) 

which is the same as Bardasis and Schrieffer's 
result. [2] 

For large l Eq. (46) gives 

2 2 k2v2 
Wtm (k) = Wt (0) + T ( 1 - m2l2) (l ~ 1). (48) 

7. EXCITATIONS WITH NON-VANISHING ANGU
LAR MOMENTUM AT LARGE k 

When the wave vector k increases the magni
tude of the angular momentum l of the excitation 
ceases to be a good quantum number, and each ex
citation is a superposition of harmonics with dif
ferent values of l (but one value of m ). For a 
certain value of k which is about equal to Aa./v 
the excitation energy becomes, generally speak
ing, equal to 2.6., and after that the excitation 
ceases to exist since as w > 2.6. it is unstable with 
respect to a break-up into two single-particle ex
citations. We determine now the shape of the 
spectrum near its endpoint. Let us, for example, 
consider the case l = 1, m = 0, and for the sake 
of simplicity assume that all g1 with l > 1 vanish. 
Up to terms of order g0 we can neglect in Eqs. (30) 
the quantity K4 so that this set becomes 

K~o = g1(L + fuo) K~o + ifuoK~o. K~o = ig1fuoK~o- fuoK~o· 

Using Eq. (A. lOb) from the appendix we get 
from (49) 

(49) 

;t= 
II /1 max 

FIG. 2 

tangent to the horizontal line w = 2.6. near kmax 
so that the complete w(k) curve is of the form 
given in Fig. 2. 

It turns out, however, that for each m ~ 0 there 
is one excitation branch which does not end, even 
at large k. Indeed, if l and m have the same 
parity, the matrix elements of f for w near to 
2.6. are logarithmically large because of the small 
x. This logarithm compensates for the fact that 
the coupling constant in the right-hand sides of 
Eqs. (30) is small. Using Eq. (A.13) we can write 
the set (30) in the form 

+ 2k:t'l Ptm (0) InV4t'l':__wzLgL,PL,m(O) (Kf.m + iK~,m), ,, 
K}m= i 2:VaPim(O) InV4t.:~w2 _l]gt,Pt,m(O)(Ktm + iK~,m). 

I, (53) 

Introducing the notation 

Xm = 2:01'1 Plm (0) In V 41'1=~ w2 ~gt,Pt,m (0) (K~,rn + iK~,m), 
I, (54) 

we get for the excitation considered here 

Kfm = iP1m (0) Xm· (55) 

Substituting (55) into (54) we find 

I 4t'l I kv ~ 2 = k n V .::..JaiPtm (0), v 41'12- w2 t 
(56) 

and hence 

4~2 _ ro2 = min{k2v2, M 2}.exp [ -~~(~atNm (O)r1 
l (57) 

Equation (57) is valid apart from a possible numer
(50) ical factor in front of the exponential, and is applic-

where a 1 is given by (35). The end of the spectrum 
kmax is then determined by the value w ( kmax) 
= 2~, and thus 

kmax = 3ctl~jv. (51) 

Expanding Eq. (50) near kmax we get 

(4~2 - ro2) In 4t'l;~ wz - ~2 (k;,ax- k2) = 0. (52) 

It is clear from Eq. (52) that the curve w(k) is 

able in the region 

kv ~ ~ 2] azP~m (0). (58) 
l 

The difficulty of considering the region k ""' aMv 
makes it impossible for us to follow in detail the 
behavior of these branches, starting from k = 0. 
It is, however, clear from the theorem on the non
intersection of terms of the same symmetry C14J 
that the branch extending into the large k region 
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is the one with the smallest energy for a given m, 
that is, the branch with maximum gz. 

When m = 0 an annihilation term with 2pD (k) 
is added to the right-hand side of (53). Restricting 
ourselves to the region a.zD. « kv « A we get 

a 2nA kv 
Kto = -k-Pt0 (0) In ~r 

v r 4A'- ro• 

x [ ~ gt,P t,o (0) (Kto + iK1,o)-2ipD(k) Kgo l (59) 

Putting l = 0 in the first of Eqs. (55) we see that 
the expression in square brackets vanishes and that 
thus K~0 = K~0 = 0. The equations do therefore not 
have a solution with w close to 2A in the region 
aD. « kv « A. All excitation branches with m = 0, 
l "'- 0 which are close to 2D. for small k stop thus 
for kv ..... a.zD.. 

We note in conclusion that the results of this 
paper have been obtained assuming an isotropic 
model of a metal. Deviations from isotropy [tS] 

may turn out to be important when w is close to 
2D.. The results are, apparently, little changed 
at small k, if the relative anisotropy of A is less 
than or of the order of g2. The ~~ase of large k 
needs separate consideration. 

The authors are grateful to A. B. Migdal, 
S. T. Belyaev, and L. P. Gor'kov for interesting 
discussions. 

APPENDIX 

EVALUATION OF THE COEFFICIENTS nir 

It is convenient to introduce for the evaluation 
of the quantities nir which are defined by Eqs. 
(28) instead of the 4-vector k = k1 - k2 the two
dimensional vector q with components 

qa = (k1 - kz)s = kpfm. = knv, (A.l) 

where v is the particle velocity on the Fermi sur
face. Using Eq. (17) and writing 

1 ' ' t;, = -4 Sp rt (~ - ip1) ra rrTa (~ - ipz), 

+ 1 1 P1 = P 2 q, P• = P- 2·q, (A.2:) 

we rewrite (28') in the form 

rrtr . (' d2pt,, (A ) 
= - t ~ (p~ +A') (p~ +A') .a 

Dropping the odd terms in p in ~r which vanish 
when we integrate over p, we get for the tir the 
following expressions: 

lu = P1P2- ~2 • l1s = l1a = /14 = 0, 
iss = P1P2 + ~2 • lr,a = las = q4~• /54 = - /45 = qa~. 

las = (pl)a (p2)s + (p1)4 (p2)4- ~2 , lu = las+ 2~2, 
ia4 = - i4a = 2 (p1)a (pz)4. (A.4) 

The relativistic integrals which we obtained, 

I ( ) . I A'd2p 
q = - t ~ (p~ + A2) (p~ + A2) ' 

I ( ) . \ (PI)o: (pz)/3 d2p 
o:/3 q =- t .\ (p~+ A')(p~ +A') 

(A.5) 

(a., {3 = 3, 4) can be evaluated simply using Feyn
man's method. [19] Applying this method to evalu
ate I (q) we find 

1 
. \ d \' A2 d2 f 

= - t j X j [f1 + A• + q' (x-x') I' 
0 

1 
1 (' A2 dx 

= 2 .\ A2 + q2 (x- x2) 
0 

(f = p + (q- qx)f2). (A.6) 

Introducing {32 = -q214D.2 = [ w2- (k·nv)2] I4D.2, 
we find 

I ( ) = _!_ arc sin~ == _
2
1 f (r.!), (A. 7) 

q . 2 ~Vi- i3• ~-' 

The integral Ia.{j ( q) contains a logarithmic 
divergence for large p. We must therefore evalu
ate instead of Ia.{j< q) the convergent quantity 
Ia.fj(q)- Ia.fj(O), and find the constant Ia.fj(O) by 
direct "non-covariant" integration, with cutoff at 
a frequency WD taken into account, as when deriv
ing (20). As a result we find 

I o:/3 (q) = I o:/3 (0) + !. bo:!3 (I - f + ~2 f) 
2 

(A.8) 

We must bear in mind that the interaction in the 
Z-th harmonic may be cut off at a frequency w1 dif
ferent from wD. The resultant logarithm L ( l) 
= ln ( w1 I A) may therefore, strictly speaking, be 
different from L = ln ( WD I A) = g0 1• To simplify 
our formulae we put henceforth wz = WD; if nec
essary, we can easily make the appropriate cor
rections. Substituting Eqs. (A.4) to (A.8) into (A.3) 
we get the following values for the rrir: 
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flu = L - f + ~2{, nss = L + ~2{, nsa = nas = q4{12tl., 
ns4 = - n4s = qafl2tl., naa = - f- q~q-2 (I -f), 

nu = q;q-2 (f- 1), ITa4 = - IT4a = qaq4q-2 (1 -f). 

(A.9) 

We give the expressions for the function f ({3) 
given by (A.6) and (A.7) in the limiting cases: 

1) ~ __. 0 f (~) __. 1, (A.10a) 

2) ~2 ___. 1 _ 0 f (~) ___. n/2 VI _ ~2. (A.10b) 
3) ~2 __. _ oo f (~) ___. - ~ ~-2 In (- 4~2). (A.10c) 

We find also with logarithmic accuracy the form 
of the matrix element fzz1m for large k. In the in
tegral 

1 

fu,m = ~ Pu11 (x) Pt,m (x) f (~) dx {A.11) 
-1 

the small x region is important. With w - 2~ and 
small x, Eq. {A.11) can, according to (A.10b) be 
written in the form 

Xmax 2n.1.dx 

fu,m:::::; p lm (0) p t,m (0) ~ V 4,1.2- w2 + k•v•x• . {A.12) 
0 

If kv < 2~, we have Xmax ~ 1; if, however, 
kv > 2~ the function f increases fast according to 
Eq. {A.10c) starting at kvx ~ 2~ so that the ex
pression for f { {3) which was used in {A.12) be
comes inapplicable. The matrix element fzz1m 
is thus with logarithmic accuracy equal to 

2rr.:l 1 kv 
ttl - - n Ptm (0) Pt,m (0), 

,m - kv '' 2 "4.1.2 -w 
{A.13) 

where 

kv = min{ kv, 2tl.}. 
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