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It is assumed that the main contribution to the amplitude of a direct nuclear process comes 
from Feynman diagrams whose singularities are closest to the physical region of the vari­
ables. Using energy dispersion relations, a singular integral equation is derived which 
takes account of interaction in the initial and final states. This equation admits of a simple 
iteration procedure, the first iteration yielding the distorted wave method. It is found that, 
apart from pole diagrams corresponding to the Butler mechanism and also to exchange 
stripping and heavy pick-up reactions, more complex diagrams can also give a significant 
contribution to the direct process mechanism. This result is illustrated by the reactions 
Be9 ( d, n) B10 , Be9 (a, t) B10 , and c12 ( d, p) c13 • The mechanism of some reactions of the 
( x, yz) type, and in particular, of reactions in which clusters are knocked out, is consid­
ered from the same viewpoint. 

1. INTRODUCTION In the center-of-mass system of the colliding 
particles, which will be used throughout the fol­
lowing considerations, these three variables are 
connected through the simple relation 

1. Formulation of the problem. A large amount 
of experimental data indicates that the direct 
reactions of the type 

q2 + p2 = 4 (mxA + myB) E + 4myB Q. (4) 

A+x-~B+y, 

A+x-~B+y+z 

(1a) 

(1b) 

are well described by Feynman diagrams with a 
small number of internal lines. The simplest 
pole diagram for deuteron stripping has been 
considered by Amado,[tJ and corresponds to the 
Butler theory of stripping. The present paper 
is devoted to a further application of disper­
sion relations to the theory of direct processes. 
We shall mainly be concerned with processes 
of the type ( 1a). In this section we explain the 
notation and formulate the basic theorems of 
our work. 

2. Kinematical relations. Reaction ( 1a) is 
characterized by two independent kinematic va­
riables. These can be chosen as any two of the 
following three quantities: a) the kinetic energy 
E, of the colliding particles, b) the square of 
the momentum transfer, 

q2 = (py-py, 

where Px and Py are the momenta of the par­
ticles x and y, and c) the square of the sum 
of the momenta of particles x and y, 

(2) 

Here mxA and myB are the reduced masses of 
particles x and y, and Q is the energy released 
in the reaction, or its threshold: 

(5) 

(we assume throughout n = c = 1). 
The variables cf and E will be chosen most 

frequently as independent variables. However, in 
certain cases (exchange stripping, heavy pick-up) 
it is convenient to use r/' instead of cf. 

3. Unitarity and analyticity. The unitarity 
condition 

ss+ = 1 

for the S matrix written in the form 

S = 1 + i (2n)4 T; 

T = ~ + i.A, .A =.A+, ~ = ~+, 

leads to the well known formula 

(2n)4 + 
.Atf =-2- ~TinTnf· 

n 

(6) 

(7) 

(8) 

(9) 

The summation (integration) in (9) goes over all 
intermediate states n for which the transitions 
i- n, n- f are allowed by the conservation laws. 
The matrices T and .A are of the form 
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Tkt (q2 , E) = Mkt (q2, E) {)1. 1,1.164 (l- m), (10) 

.Akt (q2,E) =Akt (q2, E) {)),"' 1 {)4 (l- m). (11) 

The arguments of the 6 functions in ( 10) and 
( 11) are the momenta and energies of the states 
k and l ; the index A. denotes the set of discrete 
quantum numbers. The quantity Akl is the ab­
sorptive part of the amplitude Mkl· The basic 
postulate of the theory of dispersion relations is 
the assumption that the amplitudes Mkl <cf, E) 
are analytic functions of their arguments. The 
amplitude Mkz ( cf, E) has singular points (poles 
or branch points) and is, therefore, in general a 
function defined on several sheets. In the theory 
of dispersion relations one is concerned with 
only one of these sheets, called the physical 
sheet. Mkl ( z) satisfies the relation 

Mkt (Z•) = M~, (Z), (12) 

where 

2. THE REACTION A + x- B + y 

1. Pole diagrams. The part of the sum (9) 
which corresponds to transitions f- n in which 
one particle b of those emitted in the transition 
i - n is absorbed, can be written in the form 

Att = 2:rtmb6 (p~- 2m"Eb) ~ M1bMt,. (13) 

The summation in (13) goes over the spin vari­
able Sb of particle b; mb, Pb• and Eb are the 
mass, momeP.tum, and energy of the intermediate 
particle b. Using ( 13), it is easy to show that 
the amplitude Mif has a pole at 

p~ = 2mbEb 

and is near this pole of the form 

'Y]->+0. 

The pole amplitude ( 14) is described by a 
Feynman diagram with a single internal line. 
Figure 1a shows Amado's diagram correspond­
ing to the Butler theory of stripping. For ex­
ample, in the reaction ( d, p) we have b = n, 

(14) 

in the reaction (He3, p), b = d, etc. The dia­
gram of Fig. 1b corresponds to a pick-up 
process. For the reaction (p, d) we have b = n, 
for the reaction (n, a), b = He3, etc. 

Figure 1c shows a diagram corresponding to 
exchange stripping and heavy pick-up. For ex­
ample, in the reaction B11 ( d, n) c 12 we have 

/lj-T/I"a\_ .r 8 /by 
b 

8 .1/ 

FIG. 1. a- pole diagram for the stripping reaction, 
b- pole diagram for the pick·up reaction, c- pole diagram 
for the exchange stripping and heavy pick·up reaction, 
d- quasi·compound process. 

b = B10 • The diagram of Fig. 1d is reminiscent 
of the formation and decay of a compound nu­
cleus, but the actual situation is somewhat more 
complicated. The point is that the compound 
nucleus is related to complex poles situated on 
the nonphysical sheet. The Feynman diagrams 
corresponding to the compound nucleus on the 
physical sheet are complicated and their singu­
lar points are branch points, not poles. We 
emphasize in this connection that the poles of 
the diagrams of Fig. 1 a to d lie on the real 
axis and correspond to such states of the nuclei 
b which can not decay under emission of nuclear 
particles ( {3 decay or radiative transitions are 
not excluded). In this sense the diagram of 
Fig. 1d corresponds to a direct reaction which 
may be called a quasi-compound process. The 
diagrams of Fig. 1 a to d describe all possible 
pole terms in the amplitudes of direct reactions 
of the type (1a). From formula (14), which 
corresponds to these diagrams, one can imme­
diately derive a number of important features 
of direct processes of the type ( 1). 

For the ordinary stripping reaction (Fig. 1a) 
we have according to the energy and momentum 
conservation laws 

p~- 2mbEb = q2 +2mb [!lyBe~B +(I- flyB) E~li 

+(fluB- llxA) E]. (15) 

Here 

(16) 

is the binding energy of particles {3 and 'Y in the 
nucleus a, and 

If ma{3 F;J rna, formula ( 15) goes over into the 
simple relation 

(17) 

(18) 

It is seen from ( 15) and ( 18) that the amplitude 
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for the stripping reaction has a pole in the variable 
cf for nonphysical values of this variable ( cf < 0). 
It follows that the amplitude assumes its largest 
value at the smallest physically admissible value 
of cf. This occurs when the particles y are 
emitted in the same direction as that of the in­
coming particles x. 

In the pick-up reaction (Fig. lb) the pole also 
lies in the region of nonphysical values of q2 : 

q2 = -2mb [J-1ya 8~b + (1 - 1-Lya) 8 fb + (1-LxA- 1-Lya) £] · (19) 

The best approximation to the pole is given by the 
smallest physically possible values of cf. The 
angular distribution must have a maximum in the 
forward direction. 

In exchange stripping and heavy pick-up reac­
tions (Fig. lc), the pole occurs at nonphysical 
values of the variable p2: 

P~ =-2mb [(1- !lay) e~b + !-1 Bye:B + (1-LxA- !lay)£]. 
(20) 

If rnA , roB » mx, my, then 1-tBy « 1, J.LxA. R> 1 
and 

It follows from (20) and (21) that exchange 
stripping and heavy pick-up should be most im­
portant in exothermal reactions, where E can 
be small. It is also clear that the angular dis­
tribution should have a backward minimum. 

In the quasi -compound process (Fig. ld) the 
pole occurs at negative values of the energy E: 

(21) 

(22) 

It follows that the angular distribution will be iso­
tropic for the quasi-compound process. For this 
reason it is difficult to separate the contribution 
of the quasi-compound process from that of re­
actions which go through the compound nucleus 
stage. 

The assertions made above on the angular dis­
tributions would be exact if the amplitudes 
Mif ( cf, E) had no other singular points besides 
the pole corresponding to the particle b [in this 
case the numerator of formula ( 14 ), as the resi­
due of an analytic function, is a constant]. If 
there are other singular points, we can still write 
the amplitude in the form (14), but the numera­
tor will not be a constant any more. It will be a 
slowly varying function of the variables cf and 
E if the other singularities are much farther re­
moved from the boundary of the physical region 
than the pole under consideration. In the oppo­
site case the variation of the numerator of ( 14) 
with cf and E in the physical region can be just 

as or even more important than the variation of 
the denominator. 

It should be emphasized here that we must 
consider not only the singular points on the 
physical sheet but also those on the other sheets 
(for example, if we are near a pole correspond­
ing to a compound nucleus level, the amplitude 
of the reaction will be a sensitive function of E 
although the singular points on the physical sheet 
may lie far away from the considered region of 
values of E). Since the nucleus has a radius R, 
the point I q2 I = 1/:RI is of special physical sig­
nificance. In terms of the theory of dispersion 
relations, this means that the reaction amplitude 
has a singularity in this region of values of the 
variable cf. On the other hand, it is very diffi­
cult to tell immediately which Feynman diagram 
corresponds to this singularity. This can be done 
only in the case of the deuteron. The dimensions 
of heavier nuclei are, apparently, determined by 
singularities in the variable cf which lie on the 
nonphysical sheet.* We emphasize that this last 
assertion is to be regarded as a hypothesis. It 
is important mainly for the derivation of dis­
persion relations in cf on the basis of the dia­
grams considered in part 3 of this section. In 
dealing with pole diagrams it is sufficient to have 
in mind, first, that the singularity which deter­
mines the dimensions of the nucleus is not a pole 
on the physical sheet and, second, that the nu­
merator of ( 14 ) must be regarded as a function 
of qR. This corresponds to the Butler theory, 
which is therefore described by the pole diagrams 
of Figs. la and lb. 

Formula ( 14) can be rewritten appropriately 
by introducing the vertex parts r representing 
averages over the spin variable sb. Thus we 
write for the diagram of Fig. la, for example, 

MtbMbr = :rTm/?fb!i (qRx, Sx, Sy) [~b (qRB, S.!, sa). (23) 

The upper indices of r denote the variables of 
the particles coming into the vertex and the lower 
indices correspond to the particles coming out of 
the vertex. Rx and RB are the effective radii of 
the vertices, and sA, sB, sx, and sy are the spin 
variables of the particles A, B, x, and y. 

*It was noted by V. N. Gribov that the singularity corres­
ponding to the radius ofthe nucleus may be due to the finite 
range of the nucleon-nucleon forces. It is, therefore, possible 
that this singularity corresponds to complicated Feynman 
diagrams with internal11-meson lines. The main motivation 
for this point of view comes from the fact that, contrary to the 
deuteron case, the nuclear three body problem has no solution 
in the approximation of 8-function forces between the nu­
cleons. 



DISPERSION THEORY OF DIRECT NUCLEAR REACTIONS 1151 

With the new notation, formula ( 14) for the di­
agram of Fig. la takes the form 

M;r = 2:rrrJb rbuf(q2 + x%), (24) 

where the quantity K~ is defined by formula ( 15 ) . 
The differential cross section has the form 

d; (2J8 + 1) (2Ju + 1) Py~ (ffu}2 . (25) 
dQY = nlxAmuB (2J A+ 1) (2Jx + 1) Px (q2 + x~)2 

Here* 

(26) 

•cx·•ll 

and <Kly is the element of solid angle in the mo-
mentum space of particle y. [ ___ ] 

The values of the quantities (r[;13 >2 112 at the 
pole (i.e., for cj = -Kb) are called the reduced 
vertex parts and are denoted by rf:13: 

~~(l = [ (f~(l)2 J~:=-xz· (2 7) 

B · d te t". The reduced vertex part y Ab m eu ron s r1ppmg 
or pick-up reactions (b = p, n) is given in terms 
of the reduced width of the reaction and the re­
duced vertex part rgn represents the normaliza­
tion factor of the internal deuteron wave function. 

Through the introduction of the reduced vertex 
parts we have achieved a uniform parametriza­
tion of the theory of direct processes. What is 
important here is that the cross sections of the 
various processes can involve the same reduced 
vertex parts (for example, the cross sections for 
the reactions A ( d, n) B and A (a, t) B contain 
the same reduced vertex part y~P. ) • It is there­
fore possible to establish a quantitative connec­
tion between different types of direct nuclear re­
actions. It should be emphasized, however, that 
it is not easy to carry through such a program, 
since the pole type mechanism of direct proc­
esses is not the only and not even always the 
most important mechanism (see part 3 of this 
section). In cases where the pole diagram gives 
the dominating contribution to the reaction am­
plitude, the reduced vertex parts can be deter­
mined from the experimental data by extrapo­
lating formula (25 ).t 

* By definition 

r 2 = (fll"l)*. 
[3·r a 

tTo carry out the extrapolation, we must first "weaken" 
the dependence of the vertex parts on qR. Experience indi­
cates then that one should divide du/dfiy by [jz8 (qRa) 

x jzx(qRx)l'. The order of the spherical Bessel functions la 
and lx and the radii Ra and Rx are chosen such that the 
angular distribution is "smoothed out." The extrapolation in­
to the nonphysical region can then be carried out immediately 

In formula (25) we have summed over the 
spin variables of the emitted particles y. It is, 
however, easy to convince oneself that the pola­
rization of the particles y vanishes in the pole 
approximation if the beam of particles x and the 
target nucleus A are unpolarized and the pola­
rization of the residual nuclei B is not fixed in 
the experiment. This result has a simple physi­
cal interpretation. It is seen from (25) that the 
whole process can be regarded as consisting of 
two independent processes characterized by the 
two vertices. One of these vertices represents 
the decay of an unpolarized particle. There will 
thus be a correlation between the polarizations 
of the particles into which the decay takes place, 
and the summation over the spin variable of one 
of these particles (b) causes the vanishing of 
the polarization of the other particle (y or B). 

We note further that the effect of the inter­
ference between different pole diagrams should 
be small as a rule, since the poles correspond­
ing to interfering diagrams lie in different re­
gions of the variables (an exception is the inter­
ference between the diagrams of Figs. lc and ld). 

2. Interaction in the initial and final states. 
The interaction in the initial and final states is 
described by terms in the unitarity condition 
which correspond to the transitions 

i-+n =A+ x-+ A'+ x', n-> f =A'+ x' _,. B + y; 

i _,. n = A + x -> B' + y', n -> f = B' + y' _,. B + y. 

The diagrams corresponding to these transitions 
are shown in Figs. 2a and b. In the first case the 
particle x is scattered by the nucleus A, after 
which the nuclear reaction takes place. In the 
second case (Fig. 2b) the first transition is the 
nuclear reaction, while the last transition is a 
scattering of particle y by nucleus B. In both 
cases the intermediate states contain two vir­
tual particles. Integration over momenta and 
energy of the intermediate particles leads to 
the formula 

Axu = {: ~ t:·xMx·u dQx· + =~ ~ M;·xfu·udQu'• (28) 

where Axy = Aif, Mxy = Mifi fx'x and fy'y are 
the scattering amplitudes 

with the help of (25). The guiding consideration in choosing 
Ra and Rx is the circumstance that these quantities must 
be close to the radii of thE; nuclei B and x. The numbers la 
and lx can be interpreted as the orbital angular momenta of 
the particle b in the nuclei B and x. We emphasize that 
this .interpretation is essential for finding the angular momen­
ta and parities of the states of the nucleus B, but for the 
extrapolation procedure itself this identification only serves 
as a guiding principle in choosing the smoothing factor. 
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a 

II 

.x~.V 

11~8 

lj 

8 

c 

b 

z~yr~!l 

11~811~ 
FIG. 2. General diagrams taking account of the inter­

action in the initial (2a) and final (2b) states, c- inclusion 
of the initial and final state interactions for the simplest 
(pole type) reaction mechanism. 

Px = Y2mxAE, Py = Jf2muB (E + Q): 

(29) 

(30) 

dD,c, and dOy' are elements of solid angle in the 
momentum space of the intermediate particles x' 
and y'. The integration sign in ( 28) also implies 
summation over the spins of the intermediate 
particles. 

If the inelastic process A + B ~ B + y gives a 
small contribution to the scattering amplitudes 
fx'x and fy'y, so that the latter can be regarded 
as independent quantities, the following relation 
holds: 

~f:•xMx•xdQx' = ~fxx·M;:x·dQx'• (28a) 

[Under these assumptions this equation is a con­
sequence of the fact that one can interchange the 
positions of the matrices T and T+ in formula 
(9) I. 

In order to construct the entire amplitude from 
the absorptive part of ( 28 ), we must know the 
position of the branch points of the amplitude 
Mxy( E) in the variable E. We shall assume that 
these branch points are determined by the sim­
plest Feynman diagrams shown in Fig. 2c. The 
first diagram gives the branch point E = 0, the 
second, E = -Q, and the third gives two branch 
points, E = 0, and E = -Q. It follows that for 
Q < 0 the amplitude is analytic in the complex 
E plane with a cut along the real axis from 0 to co, 

If Q > 0, the cut will start at the point E = -Q. 
Taking this into account, we have the following 
dispersion relation in the variable E: 

o 1 r A xu (E') dE' 
Mxu(E) = Mxu(E) + n j E'-E-iTJ · (31) 

Eo 

Here ~y ( E) is the sum of the two pole terms 
and 

Eo = { O, 
-Q, 

(32) 

Formula (31) represents an integral equation 
for Mxy (E) whose kernel is given in terms of 
the scattering amplitudes fx'x and fy'y· The 
latter can be taken from experiment or calculated 
on the basis of the optical model. Equations of 
the type (31) have been considered by Omnes,[ 2J 
who indicated methods for an exact solution. In 
order to establish the connection between Eq. (31) 
and the distorted wave method ( DWM) usually 
employed in the theory of direct reactions, we 
must consider the iterations of this equation. The 
zeroth iteration, 

Mxu = M~u (33) 
gives the Butler theory. The first iteration leads 
to terms which correspond to the distorted wave 
method: 

(1) 0 1 f (' dE' dQx, ' 0 ' f (E') 
M.,u =Mxu+ 4:rr•j .)E'-E-iTJp)E)Mx·u(E) xx' 

E, 

1 00~ ~ dE' dQY, , (E') o , + -4 z E' E · P (E) fu·u Mxu' (E). :n; • - -IT) y 

(34) 

E, 

In deriving (34) we have made use of the reality 
of the pole term ~xy in (28a). The reaction 
amplitude in the approximation of the DWM can 
be written in the form 

\ + • 0 ( • ') ( ') d3 • d3 ' Mxu (DWM) = .l'ljlu (Pu' Py) Mx·u· Px' Pu 'ljlx Px' Px Px Pu• 
. (35) 

where l/Jx and 'lfiy are the wave functions of the 
particles x and y. 

The identity of (34) with the corresponding 
terms of (35) is easily established by using 

, 1 f xx' (Px• P:) 
'ljlx = 6 (Px- PJ + 2:n;2 P:2-p:- iT) ' (36) 

• 1 t;y. (Py• P~) 
'ljlu = 6 (pu- Py} + 2n' P';- P! + iTJ 

(36a) 

Besides the terms contained in (34), the ampli­
tude (35) also has a term in which the product of 
the scattering amplitudes fxx' and fy'y enters. 
This term is obtained from (31) in the second 
iteration. However, in this order still more terms 
appear which contain products of like amplitudes, 
fxx'fx'x" and fy'y"fy"y. and correspond, there­
fore, to "double scattering" of the particles x 
and y by the nuclei A and B. Since these terms 
do not appear in (35), it follows from our analy­
sis that the account of the product fxx,fy'y in the 
DWM is in excess of the accuracy of the approxi­
mation. Reliable information on the accuracy of 
the DWM can be obtained by comparing the nu­
merical solution of (31) with the amplitude (35). 

Let us restrict ourselves to the case where the 
iteration procedure converges rapidly (this con-
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dition is probabiy too stringent). This means that 

(37) 

where k and fare certain effective values of the 
wave number and the scattering amplitude giving 
the most important contribution to the integrals 
in (31) and (34). Expressing lfl in terms of the 
scattering cross section iTs, we obtain the in­
equality 

(38) 

For an estimate we set, in the case of neutrons, 
iTs ;:::;; 1TR2, and find from (38) 

liRj4n'1• ~ 1, (38a) 

which is equivalent to the long wavelength approxi­
mation. 

We can tell by looking at (31) and (28) under 
what conditions the initial and final state interac­
tions do not appreciably distort the angular dis­
tribution of the emitted particles. This will be 
the case when the scattering amplitudes fxx' and 
fy'y are nearly 6 functions in the scattering 
angles, i.e., if the scattering goes mainly into 
small angles. This situation obtains approxi­
mately in the case of nucleons with energies 
higher than 10 Mev. 

Of the experimentally observed quantities, the 
polarization of the emitted particles is the most 
sensitive to the inclusion of the initial and final 
state interactions. It should be kept in mind, 
however, that the interaction in the initial and 
final states is not the only source of the pola­
rization in direct processes. A significant con­
tribution to the polarization of the outgoing par­
ticles may come from more complicated diagrams. 
which will be considered in part 3 of this section. 

3. Triangular singularities. The pole mecha­
nism of direct processes considered in the pre­
ceding discussion can predominate if the ampli­
tude Mxy(q2) has, besides the poles, no other 
singular points lying close to the physical region 
or in the neighborhood of the poles. This situa­
tion, however, is realized only seldom, so that 
the direct reaction mechanism can be quite dif­
ferent from the pole mechanism and in particular, 
from the Butler mechanism. Let us consider here 
some Feynman diagrams which correspond to 
branch points in q2. 

We restrict our considerations to diagrams 
with three internal lines. The general type of 
such diagrams is shown in Fig. 3. The direct 
mechanism corresponding to the diagram of Fig. 
3a, for example, consists in the following. The 

FIG. 3. The sim­
plest triangular dia­
grams for the reaction 
A(x,y)B. 

·,y, -~ 
8 

nucleus A emits particle a, which collides with 
particle x. As a result of the reaction 

a+ X--* y -i b. (39) 

the particle b is formed, which is then captured 
by the nucleus c with formation of the final nu­
cleus B. The three line vertices in this diagram 
are functions of q'R (as in the case of pole dia­
grams ) , where q' are the momenta transferred 
in the vertex. The four line vertex is the ampli­
tude for the process (39), which also depends in 
general on q 2. 

The singularities of the diagram of Fig. 3 
considered below have nothing to do with the de­
pendence of the vertices on q2 and are determined 
only by the masses of the particles A, B, x, y, a, 
b, and c. The branch point closest to the physical 
region corresponding to the diagram of Fig. 3 is 
found by the general rules formulated by Landau(s] 
and developed in the paper of Okun' and Rudik.L 4 J 
In our case these rules lead to the formula 

+ q2 = -(my- mJ [ Q'- flyBQ + (flvB- flx.4) £] 
(40) 

-- m m (VeAjm + -.retiTrn)2 
a b ac ac . r l;:;bcl"lbc a 

Here 

(41) 

The analogous formula for the diagrams of the type 
of Fig. 3b is obtained from (40) by making the in­
terchanges x~A. y~ B. 

The singularity defined by ( 40) belongs to the 
class of the so-called "anomalous thresholds," 
which were first considered by Karplus, Sommer­
field, and Wichmann.L5 J As is known, these sin­
gularities occur in those cases where the follow­
ing inequalities are satisfied for the vertices, e.g., 
the vertex A- a + c: 

(42) 

(42a) 

This is precisely the situation realized in nuclear 
reactions. The appearance of the branch points 
(40) is connected with the fact that for the values 
q2 given by (40) the relation between the energy 
and the momentum of the intermediate particles 
is the same as for free particles. Since, on the 
other hand, the real decay A- a+ c is impossi-
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Singular points of the diagram of Fig. 3a with 
various virtual particles a, b for the 

reaction Be9 ( d, t) B10 

a 

b I P I d I P+ P jHe•l ~ 

-q•, Mev ! 2306 I 62.81 299,4671432 
x a.m.u. \ (pole) I I I 

ble because of the inequality (42), the singular 
point (40) lies always in the region of nonphysical 
(negative) values of q 2• 

Let us now consider some examples of nuclear 
reactions on the basis of the foregoing discussion. 
In the table we have listed the values of -q2 for 
the reaction Be9 (a , t) B 10, computed according 
to (40) with E = 27.7 Mev. The first number in 
the table is the value of .;... q 2 at the pole [Fig. 1a, 
formula (15), b = p]. The other numbers in the 
table give the branch points of the graph of Fig. 
3a for various virtual particles a, b, and c. All 
data in the table refer to the ground states of the 
nuclei A, B, and c (the singular points corre­
sponding to excited states of the virtual nucleus 
c lie in the region of higher values of - q 2 ). 

The table shows that the branch point closest 
to the pole is given by the graph with a= n, b = d, 
and c = Be8• The presence of a branch point so 
close to the pole implies that the mechanism of 
the reaction Be9 (a, t) B10 is certainly not of the 
pure Butler type. The graph of :Fig. 3a will give 
a contribution to the reaction amplitude which is 
comparable with that of the pole diagram. Indeed, 
the boundary of the physical region lies at q2 = 
16.8 Mev x a.m.u.* Thus the ratio of the square 
of the pole amplitude and the interference term 
due to the presence of the diagram of Fig. 3a can 
be of order unity, since the part of the amplitude 
corresponding to this diagram drops off roughly 
like 1/ ( q2 + q~ ), where q~ is the singular point 
determined by (40). 

The situation is similar in the case of the 
deuteron stripping reaction Be9 ( d, n) B10• Here 
the scattering amplitude has a pole at q2 = -13.2 
Mev x a.m.u. and the branch point corresponding 
to the diagram of Fig. 3a with a = n, b = d, and 
c = Be 8 lies at q2 = -48.4 Mev x a.m.u. There is 
hence no reason to expect that the Butler mecha­
nism plays the most important role in the reaction 
Be9 ( d, n) B10• In the light of our discussion, the 
results of Vlasov and co-workers [s J now become 
perfectly understandable. These results are that 
the ratios of the reduced widths of the reactions 

*a.m.u. "" atomic mass units 

leading to the formation of the nucleus B10 in 
various states are different in the reactions 
Be9 ( d, t) B10 and Be9 ( d, n) B10 • 

In a number of cases the closest branch points 
lie much farther away from the pole than in the 
case of the reactions Be9 ( d, t) B10 and 
Be9 ( d, n) B10• For example, in the reaction 
ct2 ( d, p) c13 the pole lies at q2 ~ -12 Mev X 

a.m.u. and the nearest branch point (diagram of 
Fig. 3a, a= b, b = d, c = B11 ) lies at q2 = -200 
Mev x a.m.u. However, even in this case the 
relative importance of the pole diagram and the 
diagram of Fig. 3a can be estimated only if there 
are data on the reduced vertex parts and the 
amplitudes of the reaction (39). Thus the knowl­
edge of the amplitudes of nuclear reactions with 
light nuclei is of prime importance for the under­
standing of the direct interaction mechanism in 
complex nuclei. 

An essential factor in the investigation of the 
direct interaction mechanism is the measurement 
of the polarization of the reaction products. Con­
trary to the situation in the pole type mechanism, 
we have now in the case of the diagram of the type 
of Fig. 3 that the polarization of the particle y is 
determined not only by the interaction in the ini­
tial and final states, but also by the polarization 
due to the reaction (39). It should be emphasized 
that the angular distribution of the emitted par­
ticles provides a less sensitive test of the direct 
reaction mechanism. 

3. ON THE REACTIONS A + x - B + y + z 

As in the case of the reactions (la), the sim­
plest diagrams for the reactions (1b) are the pole 
type ones. These diagrams for the processes 
(x, dx), (1r-, 2n), and (1(', A0n) are shown in 
Fig. 4 a and b. A number of experimental re­
sults now available indicate that the pole type 
mechanism predominates, but the contributions 
from other diagrams cannot be excluded just on 
the basis of these data. Thus, for example, it 
was observed in the work of Ozaki and co­
workers [TJ that the neutrons in the reaction 
( 1r-; 2n) are emitted preferably into opposite di­
rections. This result corresponds to the pole 

A~Z 

8/ a {"-,z 
FIG. 4. a- pole diagram for the reaction (x, xd), b- pole 

diagram for the reactions (r, 2n) and (K-, A0 n). 
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FIG. 5. The simplest non-pole­
type diagram for the reactions 
(r, 2n) and (K-,A0 n). 

diagram of Fig. 4b, but cannot be obtained from 
the diagram of Fig. 5, which involves the emis­
sion of a neutron and a proton in a singlet state 
by the nucleus A. It follows that the interpre­
tation of the reaction mechanism requires the 
comparison of data o,n different processes. 

If the pole diagrams are the most important, 
the cross sections for the processes corre­
sponding to the diagrams of Figs. 4 a, b, and 5 
should agree numerically (if the reduced vertex 
parts 'Y& are the same ) . It should be noted in 
this connection that the "knocking-out" of deu­
terons from nuclei is not surprising within the 
framework of dispersion theory, since there is 
no reason to believe that the reduced vertex parts 
yif are equal to zero. The quantitative descrip­
tion of this process requires, at least, the knowl­
edge of the scattering cross section of the par­
ticles x on a free deuteron in a wide region of 
energies and of the reduced vertex parts 'Yil. 
For this it is necessary to compare with data 
on other processes (which are rather sparse at 
the present time ) . 

What has been said above about the knocking 
out of deuterons applies equally well to other 
"knock-out" processes, i.e., processes of the 
type ( x, xy). This provides us with a uniform ap­
proach to the mechanism of the knocking out of 
different types of complex particles ("clusters") 
from the nucleus. We shall not quote here the 
formulas for the cross sections of the processes 
of the type (2) in the pole approximation, since 
they can be found in the well-known paper of 
Chew and Low. [B J 

In the case of reactions (2) the inclusion of 
diagrams more complicated than the diagrams of 
Figs. 4 and 5 is beset with a number of difficul­
ties. This has to do with the fact that to each di­
agram with five external lines there correspond 
five independent kinematic variables, and the po­
sition of the singular points in one variable de­
pends on the values of the other variables. Never­
theless, the interactions in the initial and final 
states can be included for many processes with 
nonrelativistic energies in exactly the same man­
ner as was done in Sec. 2. Of particular interest 
is the study of the reactions (11"-, pn) and ( K-, 
A"p) with the help of this method. The simplest 
diagram for these reactions is shown in Fig. 6. 
The reaction amplitude corresponding to this di­
agram satisfies the integral equation (31) with 

FIG. 6. The simplest diagram 
for the reactions (r, pn) and 
(K-, A0 p). 

Ax<rrf/1'7 
c n 

n(A•) 

B p 

fy'y replaced by the amplitude Mnp of the reac­
tion c ( n, p) B [using formula (29) ) . However, to 
carry out this program we must require more 
complete experimental data than are available at 
the present time. 

4. CONCLUDING REMARKS 

The method discussed in this paper has a num­
ber of attractive features: it is illustrative, does 
not make use of perturbation theory, and leads to 
formulas that are transparent in their physical 
content and relates amplitudes for various proc­
esses to one another. This last circumstance 
leads to a definite experimental program for the 
verification of the original assumptions (namely, 
the possibility of a description of the direct proc­
esses in terms of Feynman diagrams ) . The 
formalism developed is esseDtially a phenomeno­
logical theory of direct processes which is com­
pletely analogous to the Breit-Wigner theory of 
the compound nucleus. These two theories may 
be called twins in that they are both dealing with 
the singularities on different sheets of one and 
the same analytic function. Like the Breit-Wigner 
theory of the compound nucleus, our method does 
not pretend to a calculation of the reduced widths 
of the nuclear reactions but provides a uniform 
procedure for extracting such levels from the 
experimental data and establishes a quantitative 
relation between nuclear reactions which, at first 
glance, seem to be completely different. 

The author expresses his gratitude to L. D. 
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ERRATA 

Vol No Author page col line Reads Should read 

13 2 Gofman and Nemets 333 r Figure Ordinates of angular distributions for Si, Al, 
and C should be doubled. 

13 2 Wang et al. 473 r 2nd Eq. 
e2[ 2 2m e2[ 2 ( 2m 55' 

cr._. =43 w2 (ln --0.798) crl'- = 9n• w• In m;-- 48) . n ml'-

473 r 3rd Eq. (e2[ 2/4n3) w2 ;;;;. ••• (e2f2/9n3) w2 ;;;;. ••• 

473 r 17 242 Bev 292 Bev 

14 1 Ivanter 178 r 9 1/73 1.58 X 10--6 

14 1 Laperashvili and 
Matinyan 196 r 4 statistical static 

14 2 Ustinova 418 Eq. (10) 1 
- [~ (3cos2 8 -1) ... r [- 4 (3cos~ 8 -1) ... 

4th line 

14 3 Charakhchyan et al. 533 Table II, col. 6 1.9 0.9 
line 1 

14 3 Malakhov 550 The statement in the first two phrases following Eq. (5) are in 
error. Equation (5) is meaningful only when s is not too large 
compared with the threshold for inelastic processes. The last 
phrase of the abstract is therefore also in error. 

14 3 Kozhushner and 
Shabalin 677 ff The right half of Eq. (7) should be multiplied by 2. Conse-

quently, the expressions for the cross sections of processes 
(1) and (2) should be doubled. 

14 4 Nezlin 725 r Fig. 6 is upside down, and the description "upward" in its 
caption should be "downward." 

14 4 Ge'ilikman and 
... [ b2 ~1 Kz (bs) r ... [ b2 ~1(-1) 5HK2(bs) r Kresin 817 r Eq. (1.5) 

817 r Eq. (1.6) <l>(T)= ... <l> (T) :::::o ••• 

818 1 Fig. 6, Y.s (T) ><s (T) 

ordinate axis ><n (Tc) ><n (T) 

14 4 Ritus 918 r 4 from bottom two or three 2.3 

14 5 Yurasov and 
Sirotenko 971 Eq. (3) 1 < d/2 < 2 1 < d/r < 2 

14 5 Shapiro 1154 1 Table 2306 23.6 
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