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Quantum field theory methods are used to study the influence of Fermi-liquid effects on the 
oscillations of the thermodynamic quantities of a metal in a magnetic field. It is shown that 
the periods of the oscillations can be calculated by the usual scheme of I. Lifshitz and 
Kosevich. Deviations from the usual results appear in the amplitudes of the oscillations and 
are due to th~ change of the effective magneton of an excitation owing to the interaction be
tween the electrons. 

1. INTRODUCTION 

THE theory of the oscillations of the magnetic 
susceptibility in metals, which was first con
structed in a paper by I. Lifshitz and Kosevich,[t] 
is based on definite ideas about the structure of the 
energy ~vels of a metal in a magnetic field. It is 
assumed that these levels can be constructed on 
the basis of a quantization of the levels of individual 
excitations treated as an ideal F'ermi gas. However, 
the electrons in a metal are a sort of Fermi liquid. 
The theory of the Fermi liquid, constructed by 
Landau[2,s] in its application to liquid He3, shows 
that in such a system effects of the interaction be·
tween the excitations play a large role. The corre
lations that thus arise are of the order of inter
atomic distances. The question arises as to how 
the presence of these interactions between the ex
citations affects the various quantum phenomena in 
the theory of metals in magnetic: fields. 

We shall here treat the de Haas-van Alphen 
effect for the electrons in a metal on the model of 
the isotropic Fermi liquid. Generally speaking, 
the situation in the case of electrons is complicated 
by specific features of the Coulomb interaction. 
We shall assume that the long-range part of the 
Coulomb interaction is already screened off. The 
final formulas obtained below contain only the 
characteristics of the free-electron spectra (with
out a field), and therefore, in our opinion, cannot de
pend on this assumption. The same arguments also 
apply to the question of the effects of anisotropy. 

The results obtained in this paper show that when 
the spin susceptibility is not taken into account the 
expression for the oscillating part of the magnetic: 

moment can be obtained on the basis of the usual 
concept of a system of electrons as a gas of quasi
particles. This same result has been obtained in 
a paper by Luttinger[4J which has recently appeared. 
In that paper, however, the analysis of the Green's 
functions of the electrons in the magnetic field 
was made only in perturbation theory to terms of 
first order in the interaction, i.e., terms that give 
only a trivial renormalization of the chemical 
potential. Also Luttinger did not investigate the 
question of the effect of the paramagnetic suscep
tibility. The whole difference from previously 
known formulas arises in including the paramag
netic susceptibility, which, as is well knownPJ 
depends strongly on the Fermi-liquid properties 
of the system. 

Our further study will be made by the methods 
of quantum theory. We shall be interested only in 
the quantum oscillations of all quantities. The 
value of the susceptibility in a weak magnetic 
field cannot be expressed in terms of the charac
teristics of the spectrum, since its diamagnetic 
part depends also on electrons that are located 
"deep" below the Fermi surface. For simplicity 
we shall confine ourselves to the temperature 
absolute zero. 

2. THE ENERGY SPECTRUM 

We shall begin with a study of the properties of 
the Green's functions of electrons in a magnetic 
field. As usual,[s] the Green's function G (x, x) 

is defined as an average over the ground state of 
the system: 

G (r, r'; t- t') ba.13 = - i ( T ('ljla. (r, t) 'ljl~ (r', t'))). (1) 
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The particle field operators lf! 01 (x), lf!E (x') in
clude the dependence on the magnetic field H; we 
choose the vector potential A ( r) of the field in 
the form 

A (r) = {- Hy, 0, 0}. (2) 

The dependence of the Green's function (1) on 
the coordinates can be represented in the following 
way: 

G (x, x') = exp {- i (eH/2c) (y + y') (x - x')} 

X G (r- r'; t- t'). (3) 

This follows from gauge invariance, since when we 
make a displacement of the origin of coordinates, 
y-y+ b, the operators lf!(x) and lf!+ (x) trans
form according to the law 

'ljJ ->'ljle-ieHbxfc, (4) 

We shall be dealing with G ( r, r'; E), the 
Fourier component of (1) with respect to the time 
difference t- t'. In the absence of a magnetic 
field 

G0 (r - r'; e) = (2~)" ~ 0° (p, e) eip(r-r') dp. 

For small e: the function G0 ( ~· e: ) has a pole near 
the Fermi surface of the form 3] 

G0 (p, e) = a!(e- v (p- p0) + if! (e)). (5) 

The value of E = v ( p -Po) determines the spec
trum of the Fermi liquid. 

In a magnetic field the form of the Green's 
function near the Fermi surface is decidedly al
tered owing to the quantization of the levels. We 
shall show, however, that the energy spectrum of 
the electrons in the magnetic field can be obtained 
from the expression (5) by the usual rules of quasi
classical quantization, as was also suggested in the 
paper by I. Lifshitz and Kosevich.U.J 

To prove this assertion we write the Dyson 
equation satisfied by the Green's function 
G ( r, r'; e:) in coordinate space: 

[ e + f.t- 2~ (P -+A YJ G (r, r'; e) 

- ~ l: (r, r"; e) G (r", r'; e) d3r'' = b (r- r'). (6) 

Here f> = - i a I a r' 11. is the chemical potential of 
the electrons in the magnetic field, and I: ( r, r"; E) 
is the so-called self-energy part arising from the 
interactions between the particles in the Fermi 
liquid. We shall not specify concrete forms for 
these interactions. The spectrum of the system is 
determined by the eigenvalues of the operator 
which appears in square brackets in Eq. (6). 

In the notation of second quantization the Hamil
tonian for the interaction of the electrons with the 
magnetic field (2) takes the form 

Hint= ~'ljl+(r')l z:c (p- p')x + e;=~ ]Hy'ljl (r) d3r, (7) 

where Px and Px' denote differentiation (Px 
= - ia /ax) with respect to the corresponding ar
guments in the limit r- r'. We shall now investi
gate the dependence of the self-energy part 
I: ( r, r'; e:) on the magnitude of the magnetic field. 
According to Eq. (7) an increment of the magnetic 
field, H- H + oH, is equivalent to an additional 
interaction Hamiltonian: 

6H;nt = bH (" 'ljl+ (r') [-2 e (p- p')x + ez~y J y'ljJ (r) dar. 
3 ~ ~ ~) 

Using the usual diagram technique to calculate 
from Eq. (7') the change oi: (r, r'; E) 

= ( ai:j aH) o H, we can as sign to this quantity the 
diagram shown in Fig. 1. The cross denotes the 
opera tor in square brackets in the integrand in 
Eq. (7'); the circle denotes the complete vertex 
part in the magnetic field, r 01p,y0 (~1· ~2; ~3· ~4). 

Q 
FIG. 1 

The vertex part is defined as usual by the rela
tion 

<T Na. (si)'IJll3 (s2)'1jl~ (sa)'IJlt (s4)}) = Ga.y (s1• sa) G13a (s2• S4) 

- Ga.ds1. S4) G13y (s2• sa) + i ~ Ga.a.' (s1• s~) Gllw (s2• s~) 
X rrt'W,y'8' (s;. s~; S~• s~) Gy'y (s~. sa) Ga·a (s~. S4) 

x d4s~tts~d4s;d4s~· 
In the absence of the magnetic field 
r 01/3 ,yo ( ~ 1• ~2; ~3• ~4) has Fourier components of 

the form ( 27T )4 r 01/3 ,yo ( P1• P2; Pa• P4) 
xo (Pt + P2 - p3 - p4). As is well known,CaJ the 
vertex part plays an important role in the theory 
of the Fermi liquid. 

The diagram of Fig. 1 gives the following result 
for the derivative ai:;'aH: 

b o:E (r,r'; e) = _!_ \ dw' \ d3r d3r d31 [-e- (p- p')t 
rt0 oH 2n j j 1 2 2mc X 

+ ~2: [0 ]zulr<y,yf3 (r, e; r 11 w'; r 2 , w'; r', e) G (1, r1 ; w') 

X!G (r2 , I'; w'); (8) 

It is convenient to make a transformation of 
this expression. To do so we note that under the 
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infinitesimal transformation (4) 1: (r, r'; E) 

changes by the quantity 

- i (eH/c) fJb (x- x') ~ (r, r'; e). 

At the same time, under the displacement of the 
origin, y- y + ob, the Hamiltonian (7) receives 
the increment 

~ [ e • • e2Hy J bHtnt = fJb 'ljl+ (r') -.,- (p- p')x + -2 'ljl (r) d3r. 
~nlc me r'-+r 

Then, in analogy with Eq. (8), we get 

ie (x- x') b ~ (r r'. e) 
- C - a{3 ' ' 

= 2~ ~ dm' ~ d3r1d3r2d3 l [ 2~c (p - p')tx + e;~ Ly] 
xrlly,y/l (r, e; r1 , w'; r2, w'; r', e) 

XG (1, r1 ; w') G (r2, I'; w'). 

Combining this last relation with Eq. (8), we find 

a~11 il (r, r'; e) _ . e (x- x') (y + y') 
aH - - t 2c ~11,8 (r, r'; e) 

+ M11s (r, r', e), 

Mll!l(r, r'; e)= 2~ ~dm'~ d3r1d3r2d31 [~c (p- p"')tx 

e2Hl ] + ,; [ly- (y + y')/2] G (I, r1 ;w') G (r2 , I'; w') 

(9) 

X rllY>Yil (r, e; rl,w'; r2,w';r',e). (10) 

We shall show below that the terms in 
1: 0113 (r, r'; E) that come from M 01p (r, r'; E) are 
of the order H~ in the magnetic field, whereas 
for our purposes it is enough to know the spectrum 
of the system correct to terms of the order H. 
Neglecting the last term in Eq. (9), we get 

~ 11~ (r, r'; e) = exp {- ~ ieHc-1 (x -· x') (y + y') } 

all13 ~o (r- r'; e), (11) 

where 1:0 ( r- r'; E) is the self-energy part in the 
absence of the magnetic field. 

The expression (11) for 1: (r, r') can be 
written symbolically in the form 

~ (r, r') = :fo (p - eA/c). 

In fact, let us apply the "Hamiltonian" 

h = :m ( p - + A Y + i:o ( p -- + A) 
to an arbitrary function 1jJ (r) and go over to the 
p representation. As Zil 'berman [s] has sh<lwn, in 
the momentum representation the operator h can 
be written in the following form: 

h'ljlp= {2~ ( Px + i e~ d~J2 + 2~ (p~ + p;) 

+ ~ ~ 0 (s; e) exp [- i (Px + i:H a~J Sx - ipySy 

- ipzSz J d's }'i'P· (12) 

The expression (12) contains definite prescriptions 
as to the order of the operators Py and d/dpy (the 
requirement of complete symmetry of the Hamil
tonian [ 5]). In the isotropic model of the Fermi 
liquid, which we are using in this paper, the self
energy part 1:0 (p, E) is a function of I p 12 only. 
At the same time it is obvious that under the con
dition that 1: 0 (i)- eA/c) is to remain Hermitian 
different requirements as to the order of the oper
ators Py and d/dpy in 1: 0 (p-eA/c) lead to 

Hamiltonians (12) which differ by terms of order 
in the energy eigenvalues not lower than H2• For 
this reason it is more convenient to choose 
1;0 (p-eA/c) in the form 1:0 (p-eA/c) 
= l:0 (lp-eA/cl2 ). 

The exact eigenvalues and eigenfunctions of the 
operator 

( ~ eA \. 2 _ I ~ ieH d )2 ~2 ~2 
P-el- \Px+ c dpu +Pu+Pz 

are well known:[S] 

(ti-e~ Y 'ljlp,n = [p; + (2n + I) eH I cl 'ljlp,n, 

'ljlp,,, = exp {- iCPxPu feH - cp! / 2eH}H n(py Y c!eH), 

where Hn ( x ) are the Hermite polynomials. 
Therefore the Green's function of a particle in a 
magnetic field can be written near the Fermi sur
face (in the p representation) in the following 
way: 

G (p, p'; e) 

= ~ Wn{P)W.:(p)o(px-P~)6(pz-P:) 
n e+!l-(n+1h) eH jmc-pi/2m-':£O (p; + 2 (n + lj2) eH I c) + i{J (e) 

(13) 
According to Eq. (5), when the magnetic field H 
= 0, 
ao ( '. e)- 6 (p - p') 

p, P ' - e + fL- p2 12m- ~o (p2 , e)+ i6 (e) 

a6 (p- p') 
e-v (p- Po)+ ib{e) 

(14) 

Here a is a renormalization constant, and Po is 
the Fermi limiting momentum, which is determined 
from the equation 

p~ I 2m+ ~0 (p0 , 0) = 1-l· 

As is well knownP J the electrons important for 
the de Haas-van Alphen effect are those near the 
Fermi surface i.e., the electrons in the region in 
which (2n + 1) eH/c + ~z ~ p~. Therefore if we 
introduce the notation m* for the "effective" 
mass (v = p0/m* ), there follows directly from 
Eqs. (13) and (14) the following expression for the 
Green's function of electrons in a magnetic field 
near the Fermi surface: 
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n 

On (p., e)= aj(e -t- p~/ 2m*- (n + 1/2) w·-p;; 2m*+ ib(e)), 
(15) 

where w* = eH/m*c. As is shown below, the con
stants a, m*, and Po depend on the field H only 
through terms of order H:¥l. 

The Greens' function far from the Fermi sur
face [I (2n + 1) eH/c + p~ -m I ...., pt] contains no 
sharp poles; this is due to the strong damping of 
the excitations in this region (for small e: the 
damping o ( e:) of the excitations in Eq. (15) in
creases like I e: I e: IIJ.). Therefore the contributions 
to the various quantities from these distant regions 
give no oscillating singularities and can be expanded 
in powers of the field strength. 

Let us discuss the behavior of the Green's 
function G (r, r'; e:) in the coordinate representa
tion. In the absence of a magnetic field 

QO (r - r'; e) = (2~)3 ~ QO (p) efP(r-r')d8p. 

The Green's function G (R, e:) expresses the cor
relation of the electrons at different points of 
space. At distances large in comparison with 
atomic distances the only electrons that contribute 
are those moving like "free" electrons, i.e., those 
from the region near the Fermi surface. Electronic 
excitations far from the Fermi surface are strongly 
damped because of collisions with each other and 
contribute to the Green's function G (r- r'; e:) 
only at atomic distances. If in the function 
G ( r- r'; e:) we separate out the term (5) that has 
a singularity near the Fermi surface, 

QO (p, e) = B- v \P-;o) + if> (B) + g (p, e) 

[so that g (p, e:) has no singularities], it is easy 
to see that for small e: the behavior of the function 
G0 ( R, e: ) at distances Rp0 » 1 is given by 

GO(R e)=am• Jexp(ip0R+ieR;v), e>O (16) 
' 2:rtR \exp (- ip0R- ieR I v), B < 0. 

In the case of large e: the function G0 ( R, e: ) is 
rapidly damped at distances Rp0 ...., e:2 /p. 2• 

Returning to the Green's function in a magnetic 
field, we conclude that its behavior at large dis
tances is also determined by the singular part of 
the expression (15). It is easy to verify that in the 
coordinate representation G ( r, r'; e:) (for I r- r' I 
» 1/p0 ) can be written in the following form: 

a (r, r'; e) = exp [- i (eH/2c) (x- x') (y + y')l 

X _!!!_ ~ e-•Hp'f4c L (eH p2 ) 
e (2:rt)' n 2c 

n ipz(2-z') d 

~ ae P2 

X 2 • • 2 • • .., 
B + p0 I 2m - (n + 1/s) oo - p2 I 2m +tv (e) 

= exp {- i (eH/2c) (x- x') (y + y')} a (R, e), (17) 

Ln (x) are the Laguerre polynomials. [Here and 
in what follows we use the notation p2 

= (x -x)2 + (y -y')2 ]. As can be seen from 
Eq. (17), generally speaking the magnetic field 
causes a decided change in the character of the 
dependence of G {r, r'; e:) on R. In the limit of 
weak magnetic field, w* « p~/2m*, for large n and 
p « cp0 /eH, 

e-•HP'/4C Ln (eHp2f2c);:::; J0 (Y2eHn/cp). 

By replacing the summation over n by an integra
tion, we would again arrive at the result (16). 

A special role is played in Eq. (17) by terms 
with values of (n + %) w* close to p~/2m* (small 
pz). Let A< w* and IJt/2m* =A+ w* (No+ 1,4 ); 
then each such term in Eq. (1 7) contributes to 
G ( R, e:) a small quantity of the order 

This expression is exponentially damped for p 
» cp0 /eH and is a plane wave in its dependence on 
I z - z' I. This part of the G -function determines 
the oscillations of all the quantities in which we 
are interested. 

Coming now to an estimate of the term 
M (r, r'; e:) dropped from Eq. (9), let us rewrite 
this term in a somewhat different form, by substi
tuting Green's functions in the formula (3): 

M"il (r, r'; e) = 2~ ~ dw ~ d8r1d3r2d81 ( lu- Y ~ y') 
xexp {- i (eH/2c) [(r1u + lu) (rlx- lx) 

+ (r2u + lu) Ux- r2x)]} f.xY,Yi> (r, e; rh w; r2,w; r', e) 

X { (e2H/2mc2) G (I - r~o w) G (r2 - I, w) 

('{ _ rlY + r2Y) + _ie_ [i)Q (1-i"t, 00) a ( -J 1 
X y 2 2 " r2 ,W: me ur1x 

- G (I - rl, w) aa (r~~xl. oo) ]}· (18) 

This expression involves integrals containing 
G -functions of the differences of coordinates be
tween the various points of the diagram of Fig. 1. 
The region of integration in which these differ
ences are of the order of interatomic distances are 
of no interest, since their contribution to Eq. (18) 
is of the order H (and of order H2 in I:). 

Let the distances ll - ri I be large in com pari
son with atomic distances. In this region we can 
use for the Green's functions the asymptotic ex
pression (17). In estimating the quantity (18) we 
shall assume that the magnetic field is weak, and 
set it equal to zero wherever possible. In particu
lar, for the vertex part we use the expression for 
zero field. Let us rewrite this expression in the 
following way: 
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+ k, w; p1- k, e) exp [ip1 (r- r') + ip2 (r1 - r2) 

+ ik (r'- r 2)l d3p1d3p2d3k. (19) 

The Fourier component r~,y/3 (Pt• P2; Pa. P4) in 
Eq. (19) involves momenta p of the order of the 
Fermi momentum and has important variations in 
this region only for changes D.p ...., p0• Besides this, 
in the region of integration over 1 in Eq. (18) where 
11- r I is large the important values of k in 
Eq. (19) are small, and therefore we can neglect 
the dependence of the vertex part on k. 

Thus as a function of I r 2 - r 1 I and I r- r' I the 
expression (19) is rapidly oscillating at atomic 
distances. [Close to the Fermi surface I p1 I, 
I P2 I ...., Po the Fourier components 
r ay,y/3 (Pt• P2; P2· p1 ) in Eq. (19) depend only on 
the angle between the vectors p1 and P2 ]. Conse
quently, for purposes of the integration over r 1 

and r2 in Eq. (18) for 11- r 1 I >> 1/p0, for which 
values only the Fourier components with momenta 
close to the Fermi surface are important in the 
functions G (1-r1, w), the vertex part (19) is 
essentially a {j function of r 1 - r 2 and r- r'. 
This fact is the expression of a fundamental physi
cal assumption of the theory of the Fermi liquid,[2] 
according to which the interaction between the par
ticles is a short-range one, and all of the correla
tions that arise between them fall off rapidly at 
atomic distances. (For the electrons in a metal 
the Coulomb interaction is also screened off at 
distances of the order of atomic distances.) 
Nevertheless this assertion is not completely 
rigorous. 

As has been shown by Landau,Ca] in a number of 
cases the vertex part can have a "long-range" 
part. Such singularities are due to the diagrams 
in the vertex part which are shown in Fig. 2, a. 
In this diagram the squares denote irreducible 
vertex parts which have no singularities in the 
direction 1-2. In fact, substituting in these dia
grams the expressions (16) for the Green's func
tions and integrating over the frequencies of the 
internal lines, we get ( Rt2 » 1/Po) 

where E is the small frequency transfer. Figure 2, 
b shows this same diagram in the momentum 
representation, and from it we can .see that the 
slowly decreasing dependence in the vertex part 
is due to small frequency and momentum transfers 
in the Fourier component r 0 (Pt• P2; Pa• P4). In 
Eq. (19) such a small transfer can correspond 

a 

FIG. 2 

either to a small value of k or to a small transfer 
I Pa - Ptl s::; I P2 - p1 I « p0• Obviously in the latter 
case the contribution from these singularities in 
Eq. (19) is small, because of the smallness of the 
region of integration over p1 and P2. As for the 
small values of k, the question of these singulari
ties arises owing to the fact that in Eq. (18) there 
is a factor ly- ry = ly- rly + r 1Y- ry, and the 
quantity I riy- ry I may not be small. It is easy 
to see, however, that in zeroth order in the field 
we have by considerations of symmetry 

~ (sy - ry} ao (s - r) G0 (s- r) d3s = 0 

and therefore in Eq. (18) the factor ly- (y + y')/2 
can be replaced by ly- rly· We shall not present 
the detailed proof that all of these assumptions 
correspond to dropping in M ( r, r') terms that 
are of higher order in the field strength H as 
compared with the estimate that we get on the 
assumption that the vertex part is equal to the ex
pression for this part in the absence of a magnetic 
field and is of short-range character. 

Accordingly, in Eq. (18) we now take I r 2 - r 1 1 

...., I r 1 - r I ...., 1/p0• We can drop the exponential 
factors in Eq. (18). By considerations of sym
metry the term in the square brackets that con
tains derivatives of the Green's functions is iden
tically zero. Therefore instead of Eq. (18) we get 

' ~ ie2 H (' \' 3 3 i r 1Y + r 2Y ) 2 
Mall (r, r) ~ 4nmc2 J dw J d r1d r2d31 ~ ly- · 2 

x G (I- r1, w) G (r2- I, w) r~Y.Y:~ 

X {r, ; r1, w; r2, w; r', e). (20) 

According to the foregoing the quantity M ( r, r') 
of Eq. (2 O) is determined by the region of integra
tion 11- r 1 [ » 1/p0 and w « 1J.. For small E and 
w we can neglect the frequency dependence· of r 0 

in Eq. (19). We shall denote the corresponding 
Fourier component by r~y,y/3 (p1, P2 ). Thus it 
follows from Eq. (20) that 

M ( ') ie2H [I d3p ip <r-r') \ dQ r ( )] 1 
a,1 r, r ~ 4:n:mc2 J (2:rt)• e 1 J 4:t <XY,YI~ Pl, P2. 2 

(21) 

Proceeding to the calculation of this last inte
gral, we substitute in it the Green's function (17): 
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00 

X (' 2d - elir-2.'4c[ ( t'fj_ ~ ) [ (~!_!_ 2 \) 
~ (' [-C " :!c P . m 2c P . , 

(I 

En= (n :- 1/z)w'-J-p;[2m"-p~/2m*, 

Em= (m + 1/2)w'' + (Pz- q)2 I 2m''--- p~ /2m~ (21') 

In the expression for Em we have introduced a 
small quantity q. The point is that the integral in 
question is not uniquely defined: the expression 

~ dw ~ G (R, w) G (R, w - wo) p2eiqzd3R 

has different limits for w0, q- 0, depending on 
whether w0/q- 0 or q/w0 - 0. For the case of 
no magnetic field the singularities of such integrals 
have been studied by Landau.[3] To give a meaning 
to the integral (21') we must take the limit w0/q 
- 0, which corresponds to the fact that M ( r, r'; E) 

is being calculated in a field that is constant in 
time but weakly nonuniform along the z axis. 
Therefore, strictly speaking, the quantity given by 
Eq. (21) is a definite one of the two vertex parts 
rk and rw introduced by Landau,C3J namely rk. 
For our estimates this is of course unimportant. 

In calculating the integral of Laguerre poly
nomials in Eq. (21') it is helpful to use the exact 
relation 

xLn (x) = (2n + l) Ln (x)- (n + 1) Ln+l (x)- nLn-1 (x). 
(22) 

Therefore m = n ± 1. Integrating Eq. (21') over 
the frequencies w, we get 

Y = ;n ~ dwG2 (R, w) p2d3 R 

~ ,c $ 2 r .. ~-~ Zn" ~ J E _ E- J xLn (x) Lm (x) e-·'dx 
11, m n m o 

(En> 0, Em< 0). Using Eq. (22) and performing 
the integration over pz, we find after simple 
manipulations 

, '! a2 'V { 1 n + 1/2 

Y = (2m) '1{2 '7 2 [p~ I 2m' - w' (n + 112)]'1• 

1 - . Po • 1 / 2 } 
- w* ~ 2m* -w (n + /2) . 

The summation is taken over all values of n for 
which the radicand is positive. 

It is not hard to verify that this quantity can be 
represented in the following way: 
eH y = _ V2m* a~_!!__ {eH ~ l~/--=-p.,-~ __ w_*_(_n-,-,-~-~2-)} .• 
c w* n' iJH c Li J1 2m* 

n (23) 

The sum in the curly brackets has been repeatedly 

FIG. 3 

investigated in the literatureP•8] Using the ex
pression obtained by Sondheimer and Wilson,[B] 
which is accurate to terms of order H2, 

2~/~ ~Vf.t-w' (n + 1/2) 
ll 

and substituting it in Eq. (2 3) , we get finally 

eH V2m* a {(w* '!, .· ~L } c Y = - ro*n:3 a2 aH 11) cp (;;rJ ' 
where cp (x) is a rapidly oscillating function. Thus 
in actual fact the terms that correspond to 
M ( r, r'; E) give in Eq. (14) a correction to the 
energy levels of the excitations of the order H¥l. 

3. THE OSCILLATING SINGULARITIES OF THE 
THERMODYNAMIC FUNCTIONS 

Let us now proceed to the derivation of the 
formula for the thermodynamic potential. In order 
to separate out the small terms that have an oscil
lating character, it is more convenient to start 
from the expression for the derivative BN/oJ.L of 
the particle-number density with respect to the 
chemical potential of the system. The particle
number density is connected in a simple way with 
the Green's function (1) of the system: 

N = -- iGa.a. (x' x')x'-+X, 1'-+t+o· 

The expression for the derivative BN/oJ.L can 
be obtained by the following arguments ( cf. [s] ) . 

Let us place the system in a weak and slowly 
varying potential field o U ( r). Then the quantity 

J.L + oU = J.Lo is conserved throughout the system. 
On the other hand, the interaction of the system 
with the field oU (r) is described by the Hamil
tonian 

According to the usual rules of the diagram tech
nique the change of the Green's function in first 
order in o U can be represented by the first dia
gram of Fig. 3. In the limit of a oU independent 
of the coordinates, o U = - OJ.L, we get 

~~ = i ~ G"-Y (x, l) Gn (l, x) d4l- ~ d'£1d4s2d4s3d4s4d4lG,, 

x (x, s1) G,8a., (l, sz) Ga.,~ (sa. l) Ga.,~. (s4,x') 

x r,,"·· "·"·(sl, s2; s3, s.) 
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or, when we go over to Fourier components with 
respect to the difference of the time coordinates, 
iJN i \ \ 
OfL = Zn j dw ~ Ga.y (r, I; w) G.,, (I, r; w) d31 

- (Z!)z ~~ dwdw'~ d3s1d3s2d3s3d3s4d3 1Gaa., (r, s1 ; w) G"-•"-

X (1, s2 ; w') G"-,13 (s3 , I; w'). 

For simplicity let us first investigate the singu
larities of the first term in the right member of 
Eq. (24). These singularities are due to electrons 
near the Fermi surface, and therefore in this case 
it is sufficient to use the asymptotic expression 
(17) for the Green's functions. Substituting this 
expression in the integral and carrying out the 
integration, we get 

2~ ~dw ~Ga., (r, I; w) Gya (1, r; w) d31 

= __3_£_ (eH)2 a2 ~ I dw I dpz 
(2n)3 c n J j (ro- En+ i6 (ro)) (ro-E~ + i6 (ro)) 

(here in ED= w* (n + %) + (pz -q)2/2m* 
- PV2m* we have introduced a small momentum; 
this corresponds to the fact that in deriving 
Eq. (24) we started from the condition for equili
brium of the system in a field c5 U ( r) constant in 
time but slowly varying in space). Integrating the 
resulting expression first over w, and then over 
pz, we arrive at the expression 

v;;: (e:)a2 ~ c:~ -w· (n + 1/2) f'". (25) 

In the sum (25) a special role is played by the 
values of n for which the radicand is small. 
These terms give the nonanalytic part of the inte
gral under consideration. At the same time the 
main contribution as regards magnitude comes 
from values of n for which nw* ..... p~ /2m*. For a 
weak field the summation over the main region can 
be replaced by an integration, and from this we 
find 

(26) 

(A contribution to aN/BJ,L of this same order of 
magnitude is given by the distant regions.) Let us 
again introduce the number N0, the integer part of 
p~/2m* in units w*: p~/2m* = (N0 + %) w* 
+ 1:::. ( 1:::. > 0). The terms in the sum (25) for which 
( N0 - n) « N0 are of the order of 

(Y2m* I 2312) (eH jc) (a2 / Y~) 

and remain small in comparison. with (26) provided 

that ·( ·j pg ) ll~w w 2m* . (27) 

The condition (27) imposes a restriction on the 

study of the detailed structure of the oscillations 
in the immediate neighborhood of the Fermi sur
face. It must be remembered, however, that the 
actual region of interest for the de Haas-van 
Alphen effect just coincides with the condition (27), 
since in the magnetic fields that are obtainable up 
to the present time one begins to get a violation of 
the condition (27) only at the very lowest tempera
tures. Therefore in our later discussion of the 
quantum case we shall assume that the condition 
(27) is always satisfied. 

In order to separate out the irregular part of 
the expression (25) we substitute n- N0 - k. 
Subtracting from the new sum the terms that di
verge at the upper limit, we get 

~!~· ( e:) a2 [~ CV 11 + w*k )-'/,- 2 V No/ V w• ]N,-*oo 
0 -

= vzm· . 2v·~(_!_ ~) 
2n2 m a w -2 • ro•" ' 

where t ( s, x) is the generalized Riemann zeta 
function[iO]: 

co+> 
- f (1- S) ~ (- z)S-le-XZ 

~ (s, x) - - - 2«. z dz. 
" 1 1-e 

00 

(28) 

Thus apart from regular terms of higher orders 
in eH/ cp~ the integration of the two G -functions 
in the loop of Fig. 4 a leads to the appearance of 
small terms which are rapidly oscillating functions 
of the ratio cp~ /eH. 

~ 
~ 

I I ' 
I I 

~+~+~ 
I I I I 

a b 

FIG. 4 

Returning to Eq. (24), we see that singularities 
(28) in aN/aJJ. arise in every loop ( cf. Fig. 3) in 
which there are two horizontal lines (with their 
arrows in opposite directions). Since these terms 
are small, we have to separate each such loop only 
once. In particular, the loop can belong to the dia
gram for a vertex part. As the result of the sepa
ration of the singular terms the situation arises 
which is shown graphically in Fig. 4 b. The loop 
from which the singularity is separated out is 
marked with a vertical dashed line. Since these 
terms are small, we can set the magnetic field 
strength equal to zero in all the other parts of the 
diagram. 

In this connection we recall once again that the 
singularity (28) is due to the behavior at large 
distances r -1 of the Green's function in the loop 
of Fig. 4 a. Therefore, using the same procedure 
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with the vertex part as in the derivation of Eq. (21), 
we get instead of Eq. (24) the following result: 

iJN -vzm"m• V-.- (_!. ~) <D2 
Of1 = 2n2 w ~ 2 • w• ' 

<1> = a { 1 + 2 (~n)4 ~ [~~. "~ (pl, P2) G0 (p1, w) G0 (p2, w) d4p} 

(29) 
(the vector p1 is taken on the Fermi surface). 
In accordance with what was said earlier, our 
choice between the two limits r 0k and r 0W intro
duced by Landau [a] must be to take the limit r 0k, 
which means that the potential field used in the 
derivation of Eq. (24) is strictly independent of the 
time. 

The connection of the renormalization factor 41 
with physical quantities has been established by 
Pitaevskii. [ 9] It turns out that in the absence of 
a magnetic field 

<D = a (aG-1) = P~ dp9 • 
, Of1 P=P,. oo=o m df1 

(29') 

Substituting this result in the expression obtained 
earlier, we get 

aN 1 v-- ( dp~ )2 ( 1 1:!. ) (30) 
Of1 = V2m' 4n2 w di1 ~ 2• ffi* • 

We must calculate the thermodynamic quantities 
N and n (the potential) in terms of the variables 

JJ. and V. According to Eqs. (14) and (23}, apart 
from terms of the order H¥2 the quantity Po (JJ. ) 
which appears in Eq. (29) and also in Eq. (25) is a 
function of the chemical potential as defined on the 
Fermi surface in the absence of a magnetic field. 
Taking for the oscillating part of n only the double 
integral of the rapidly oscillating terms 
!; <%. 1:!./w*) = cp ( cpVeH), we get 

'4m'2 w•'l• ( 3 1:!. ) 
6Qosc= -3 V2m* n2 ~ - 2' w• 

m· 'l•w • •;, 00 
( 1:!. n ) 

= ""' r--'1• cos 2:n:r- - -4n' .LJ w• 4 ' 
1 

that is, an expression which agrees with the re
sults of I. Lifshitz and Kosevich[t] (in the iso
tropic model ) . 

4. THE EFFECT OF THE SPIN ON THE 
OSCILLATIONS 

In the scheme that has been expounded it is 
easy to include also the interaction of the magnetic 
field with the spin magnetic moment of the electron. 
The paramagnetic susceptibility of a Fermi liquid 
has been calculated by Landau.C2l In a metal, 
however, one cannot separate the paramagnetic 
part of the susceptibility from the diamagnetic 
part. At the same time the latter, as we have al
ready said, is due to all of the electrons, and not 

just to those near the Fermi surface, and there
fore cannot be expressed in terms of the charac
teristics of the spectrum. Owing to this we shall 
concern ourselves here only with the effect of the 
spin susceptibility on the quantum oscillations of 
the thermodynamic quantities. 

Let us find how the Green's function (15) changes 
its form when we include in the Hamiltonian (7) the 
additional term 

- ~ ~ '¢+ (r) (oH) '¢ (r) d3r. 

To do this we again consider the derivative 
8'E-af3 ( r, r'; E )/aH. Using the results obtained 
earlier, we get instead of Eq. (9) 

a~a!3 (r, r'; e)jaH = - (iej2c)(x- x') (y + y') ~a,s (r, r'; e) 

+ + ~ r dw r d3rrd3r2d3 lfap, ~ro (r, e; rl, w; r2, w; r', e) .. n j J 
(31) 

( n is a vector in the direction of the field). It is 
not hard to verify that in the last term we can set 
H = 0 from the very beginning. Substituting here 
the expression (19), we get 

1 \ ip (r-r')d3 i \ d d3 rk ( ) (2n)" J e ' P1 2:rl j w P2 ap,-:(3 P1, e; P2. w; P2, w; Pv e 

X G2 (p2 , w) (an)p,. 

Because the free functions are isotropic and 
because for momenta p1 close to the Fermi sur
face the integral in brackets (sic) is a slowly 
varying function of I p1 I, we can write the second 
term in the right member of Eq. (31) in the form 

A (an)"13o (r- r'), (32) 
where A is a constant. It follows from Eqs. (31) 
and (32) that as before the Green's function is of 
the form (15), but the energy of the excitations is 
compounded of the orbital part w* ( n + 1,4) 
+ p~ /2m* and the spin part - ~ <T· H, where ~ is 
the "effective" magnetic moment of the electron 
spin: ~ = a ( {3 + A) . The connection between ~ and 
the magnitude of the paramagnetic susceptibility is 
given by relations obtained by Landau.[2J 

We can now proceed to the calculation of 8N/8JJ.. 
Here the calculations are of a nature quite analo
gous to that of those done in the preceding section. 
We first concern ourselves with the calculation of 
the first term in the formula (24): 

_!_ \ dwd3 1 Sp {; (r, I; w) G (I, r; w) 
2:Jt ~ 

= (2~)• (e:ya2 ~~~ dwdpz[(w -En)2 + ! saH2] 
n 

X [(w-En+ sH/2 + io) (w-En- sH/2 + io) 

X (w-E~- sH/2 + io) (w-E~+ ~H /2 + io)]-1• 

As before, we first integrate this expression over 
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dw. Here we note that the integral vanishes both 
in the case in which all of the poles of the inte
grand are on one side of the axis of w, and also 
in the case in which there are two poles above the 
axis and two below. The integral is different from 
zero only in the region of En = ± ~ H/2. Defining 
the integral in a suitable way as a k -limit, we 
finally get for the first term 

4~2 V2m*(e~)a2 ~{ [p~/2m* -w*(n + 1/2) -'gH/2J-'1• 
n 

r P~ • 1 \ ]-•;,} + lzm• -- w (n +z- I + £H/2 ' (33) 

that is, the only difference from the formulas 
written before is that the single sum over n is 
replaced by the average of two terms with Pt /2m* 
-pV2m* ±~H/2. 

Let us now recall that in the second term of 
Eq. (24) the singularity (33) can be separated out 
in three ways, as shown in Fig. 4 b. Since the 
terms involving the magnetic field are small, we 
can set the field equal to zero in all quantities ex
cept the two Green's functions marked with the 
dashed line in the diagram. In the isotropic model 
the integral is 

~ r a.p, P~ (PI ,p2; P2• P1)G (p2) G (p2)d4P2 

= ; ba.~ ~ r ~P. p~ (Pl• P2; P2.P1) G2 (p2) d4P2· 

When this fact is used it is not hard to show that 
the sum of all of the loops of Fig. 4 b gives a 
singularity of the form (33) multiplied by the re
normalization factors (29). Thus instead of 
Eq. (30) we get as the final result for aNjap. 

aN VOl" (dp~\2 
{ ( 1 ~ ~H) ( 1 ~ ~H')} 

a11 = s:rt• vzm· dfl- J ~ 2· ffi* + 2c;)* + ~ 2· ro* - zw*. • 

and for the oscillating part of tile thermodynamic 
potential 

_ 2m*2 ro*'/, { (' 3 ~+-'§H/2) 
o-Qosc-- 3n•V2m* ~ - 2• -ro-.--

(34) 

The oscillating parts of all the thermodynamic 
quantities are usually stated in the form of series 
of harmonics.[!] For example, by going from 
Eq. (34) to the oscillating part of the free energy, 
we get for the magnetic moment the expression 

m*'f, ([3* H)'/, 1-1 00 (-1}' ( £ ) 
Mosc=- 2n"1i" H ~-;or;- COS [3* Jtr 

1 

- ( cp~ ;t 
>< sm nr e1iH - T)' 

where {3* = eli/m*c, and ~ can be connected with 
the paramagnetic susceptibility x and with the 
coefficient 'Y in the linear term in the heat capacity 

per unit volume c = yT, if we use the results ob
tained in Landau's paper[2]: 

(36) 

In this last formula {3 = eli;lnc is the magnetic 
moment of the free electron. Although the factor 
with the cosine has indeed been written previously, 
it was then assumed that the spin energy of the 
electron was equal to -{3a· H; that is, the Fermi
liquid properties were not taken into account, and 
the result of this was that the argument of the 
cosine was written 1rrm* /m. 

We also mention that according to Landau's 
results [2 J 

1 (- 4n•) - t \ - = B-2 ~ + -3 ' ~ == ,- ~ (Q) dQ. x ' r ->;t • 

f is the integral of the spin part of the function 
f[2] of the Fermi liquid: 

foo' (p, p') = f (p, p') + ~ (p, p') ( 0'0'') 

(all of the notations are taken from the paper of 
Abrikosov and Khalatnikov[ll] ). Therefore from 
this one could get an estimate of the size of the 
Fermi-liquid effects in a metal. In particular, the 
sign of f is very interesting, since for t > 0 
there could exist in a metal spin oscillations of 
the type of zeroth sound.[2 •11 ] 

In conclusion the writers express their gratitude 
to Academician L. D. Landau for a discussion of 
the results of this work and for his comments. 
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