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A kinetic equation for magnetic resonance in solids is deduced from the quantum equation for 
the density matrix. With the aid of this equation, equations describing the variation of the ab­
sorption and dispersion signals with increasing high-frequency field amplitude H1 are de­
rived. According to these equations, the absorption and dispersion lines become narrower, 
and X" ( w, Ht ) decreases at a faster rate than x' ( w, H1 ) with increasing H1, in agreement 
with previous experimental observations.[2] 

THE fundamental equation of the theory of magne­
tic resonance in solids is given by Bloembergen, 
Purcell, and Pound [t]: 

dn (t)jdt =- -y2H~1tg (~) n (t) + (n0 - n (t))/T1 • (1) 

Here n ( t) is the difference in the populations of 
the two levels between which the high-frequency 
field induces transitions, no is the equilibrium 
population difference of the two levels, t. = w - w0, 

'Y = p.;1i, w and H1 are the frequency and ampli­
tude of the high-frequency field, w0 = p.H0;1i, sp. is 
is the magnetic moment of the particle, Ho is the 
de magnetic field, and T1 is the spin-lattice re­
laxation time. 

This equation was deduced from qualitative con­
siderations. While in principle it provides a cor­
rect description of the phenomena observed in the 
region of weak saturation, this equation disagrees 
strongly with experiment in the region of strong 
saturation. [2•3] For example, as H1 is increased 
the absorption line first broadens but with further 
increase in H1, it becomes narrow again and ac­
quires a Lorentz shape. Such narrowing cannot be 
deduced from Eq. (1). According to Eq. (1) the 
absorption line shape has the form 

It can be immediately seen from this expression 
that the absorption line should widen with increas­
ing Ht for all values of Ht. 

Our problem is to obtain a kinetic equation from 
the rigorous equation for the density matrix and 
to derive the magnetic resonance equations from 
this kinetic equation. The equation for the density 
matrix has in our case the form 

(3) 

Here Ix, Iy, lz are the projection operators of 
the total spin on the coordinates axes, i±t = Ix 
± iiy. Si is the spin operator situated on the i-th 
crystal lattice site, and rik is a vector connecting 
the i-th and k-th crystal lattice sites. For sim­
plicity we have neglected here all interactions 
other than the magnetic dipole-dipole interaction. 

To make clear the nature of the physical proc­
esses occurring in the spin system under the ac­
tion of the high-frequency field, it is convenient to 
transform to a rotating coordinate system. As is 
well known, this is done with the aid of the trans­
formation[2•4J 

p (t) = exp (iro/:t) p' (t) exp (- irol:t). (4) 

where p' ( t) is the density matrix in the rotating 
coordinate system. Substituting (4) into (3), we 
obtain 

ap' (t) = _ !.._ [nlllz + J.tHt (/1 + /-1) 
~ a 2 

+2 

+ ~ frimmt, p' (t} J. (5) 
m=-2 

Here ftO is the secular part of the dipole-dipole 
interaction, which commutes with Iz. Rapidly os­
cillating terms of the type ftmeimwt can be neg­
lected, since they can give a significant contribu­
tion only in the satellites. [2,4] 

The initial conditions in the rotating coordinate 
system will have the form 
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, exp {(liooolz- HO)fkT0 } 

Po= h .~ • 

Sp exp {(liooo/ z- nO)fkT0 } 

(In the usual system of coordinates we assume 
statistical equilibrium at the initial moment of 
time.) 

From Eq. (5) it is easy to see that 

Sp p'(t) (H + i flHt (11 + 1-1)) = const; 

fi = lilllz + H0 • 

Below, we shall find this relation necessary for 
the selection of the correct solution of Eq. (5). 

(6) 

(7) 

Going over in Eq. (5) to the interaction repre­
sentation 

(8) 

we obtain for p" ( t) 

ar" (t)!at =- ili-1 IV (t), r" (t)l, <9> 

V (t) = ~ fllit eiflt!li(Jl. + /-1) e-ifit;Ti. (10) 

To derive the kinetic equation we use Zwanzig' s 
method, [s] the gist of which is the application of 
the projection operator P. Let us divide the den­
sity matrix p" ( t) into two parts: 

p" (t) = Pl (t) + P2 (t), P1 (t) = Pp" (t), 

P2 (t) = (1 - P) p" (t). 
A 

where P is the projection operator which extracts 
from the density matrix p" ( t) the part that is 

A ,!',.f) 
diagonal in the representation in which Iz and n-
are simultaneously diagonal. (In what follows we 
shall always be using this representation.) Multi­
plying Eq. (9) from the left by P and 1 - P, we 
obtain respectively 

ar1 (t)!at =- in-1PL (t) P2 (t), <11> 

ar2 (t)!at =- irz-1l (t) p1 (t)- rn-1 (1 - P) i (t) p2(t), 
(12) 

where the operator L ( t) is defined by the relation 

t (t) = IV (t), r (t)l. 

In Eq. (11) we have omitted the term 
PL ( t) p1 ( t ), which is equal to zero because the 
diagonal matrix elements of the operator 
[ V ( t ), p1 ( t)] are equal to zero [ see the defil!.i­
tion (10) ]. For the same reason the factor 1-P 
is omitted from the first term of the right member 
of Eq. (12). 

Multiplying Eq. (12) on the left by an operator 
A ( t) satisfying the operator equation 

aA. (t)!at = ili-1A (t) (I - P) L (t), (13) 

we obtain 
t 

P2 (t) = J-t (t) ( P2(0)-i1i-1 } dt' A (t') l (t') P1 (t')) • (14) 

Here the operator A -1 ( t) is defined by the re­
lation A -1 ( t) A ( t) = 1. In virtue of the relations 
(6) and (8), we can write p2 ( 0) = 0. Supstituting 
Eq. (14) in Eq. (11), we find 

t t" 

P1 (t) = - !2 ~ dt" ~ dt' p£ (t") A -1 (t") A (t') l (t') Pt (t') 
0 0 

+ Pt (0). (15) 

If we now expand the operators A -1 ( t) and 
A ( t) in this equation in a series in the small 
quantity £ ( t) and discard all terms except those 
quadratic in L ( t ), then we arrive at the equation 
for the diagonal part of the density matrix 

t t• 

Pt (t) = - !2 ~ dt"} dt' Pl (t") £ (t') Pl (t') + P1 (0). (16) 

With the aid of this equation we shall now cal­
culate the difference p1 ( t + T) - p1 ( t) for 
ti/Hloc « T « ti/J.LH1, where Hloc = J.L/d3, and d 
is the separation between neighboring magnetic 
moments in the crystal lattice: 

P1 (t + 't') - Pt (t) 

t+-< t-

= - !z ~ dt" ~ dt' P IV (t") IV (t'), P1 (t') l 1. (1 7) 
t 0 

Expressing the operators occurring in V (t) as 
Fourier integrals, [S] 

+oo 

]±1 (t) = exp ( { H0t) j:tt exp (- {- H0 t) = ~ dw h.t~Vwt, 
-00 

+oo 

J'!/ = 2~ ~ dte-i"'texp(! H0t)J±1exp(- {-fiot), 
-oo (18) 

we obtain, upon taking 

exp (il1fzf) ]±t exp (- illlzt) = J±l exp ( ± iM), 

into account 

Pt (t + T) - P1 (t) 
I+'< I" +oo +oo 

= -(11i:/Y ~ dt"~ dt' ~ dw" ~ dw'exp (iw"t" + iw't') 
t o -co -oo 

X {P rn .. [};:;}, Pt (t')ll exp (ill (t"- t')) 

+ P [);! rn., P1 (t')ll exp (-ill (t" -t'))}. 

In the right member of this equality we have 
omitted the vanishing terms 

P [Jl (t") [Jl (!'), Pt (t'))). 

If it is now recalled that p1 ( t') is a diagonal 
operator, and the operator rt1 has, by virtue of 
Eq. (18), nonvanishing matrix elements only for 
transitions with an energy change tiw, then it is 
easy to see that 

? rl:..., .. rl;i, P1 (t')ll 

= {) (w" + w') P' [/:._., .. rJ;,t, Pt (t')ll. (19) 
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[ The operator fv, besides separating out the 
diagonal parts of the operators that follow, also 
eliminates the singular functions o ( 0) contained 
in the diagonal matrix elements of the operators 
iLtL and iji:W by definition (18).] Consequently, 

P1 (t + 't') - P1 (t) 
t+~ I" +oo 

= -(112~~y ~ dt"~ dt' ~ dw" {P' rl.:"'. rJ-;:;!, P1 (t')ll 
t 0 -00 

X exp [i (w" + ~) (t"- t')] + P' 0;;;;~ rJ~-o>", p1 (t')ll 

X exp [- i (- w" + ~) (t"- t')D. 

Changing now the variable of integration in the 
second component in the curly brackets of this 
equation from w" to -w" and using the easily 
verified relation 

we obtain, after integrating over t', 

P1 (t + -r) - P1 (t) 

X [n., [/=~"• P1 (t)JJ. 

We have replaced here p1 ( t') by p1 ( t) in the in­
tegration over t'. This change is completely justi­
fied in our case, for when H1 « Hloc, Pt ( t) 
changes markedly in the time interval li/~LH1 , 
whereas 

+oo 
~ dw" cos [(w" + ~) (t"- t')l P' [/~. rl=~", Pl (t')ll 

.-00 

is a rapidly changing function of t" - t', which 
differs from zero only in the region I t" - t' I 
:S ti/ ~!Hloc• since the spectral width of the opera­
tors rt} is "'~!Hloc/ti. For the same reason we 
can replace Pt ( t + T ) - Pt ( t) by rdp 1 ( t )/dt when 
T « ti/~!Ht. 

The integration over w" in Eq. (21) is easily 
accomplished, for when ti/~!Hloc « t" the function 
sin [ ( w" + ~) t"] I ( w" + ~ ) can be replaced by 
1ro ( w" + ~ ). This comes about because the func-

" "1 "-1 tion P' [ Iw" [ Iw", Pi ( t')] ] changes with frequency 
much more slowly than sin [ ( w" + ~ )t"]/(w" + ~) 
when t" » 11/~!Hloc· With this in mind, we find 

dpl ul = _ _:::( 11Hl )2 P' £1 1 rJ-l (t)JJ c22) dt 2 1t -~ ~ , P1 · 

We shall now show that this equation corresponds 
to the conservation law 

d A 

dF Sp {p1 (t) H} = 0. (23) 

(This relation derives from Eq. (7) under the con­
dition Ht « Hloc·) In fact, after making use of 
Eq. (22), we obtain 

d A 

dF Sp {p1 (t) H} 

J't ( JlH l )2 A 1 A A 1 A -1 = - 2 - 1- Sp {P [H, I-~] [I~, p1 (t)]}. 

" "1 We note further that the commutator [ H, I_~] 

vanishes, since it is easy to obtain from definition 
(18) the relations 

(24) 

From this we obtain the desired Eq. (23). 
Because of Eq. (24), any function of the opera­

tor H will commute with the operator i!.~. Hence 
the stationary solution of Eq. (22) will be an arbi­
trary function Pst = f(:A). In order to find the ac­
tual solution it is necessary to require that the 
solution Pst = f (:A:) possess, by virtue of the 
homogeneity of our macroscopic system, the 
property of quasi-independence of the separate 
parts of the system f (H) = f ( H1 ) f ( H2 ). Here H1 

and H2 refer to any two arbitrarily chosen parts 
of the system for which H1 + H2 R: H. The only 
normalized solution of this type would be 

Pst = exp (- H/kT*)/Sp exp (- HfkT*). (25) 

The quantity T* can be defined by making use of 
Eq. (23): 

• fl2 + Sp (ifo)z /Sp 1 ~ 
T = T 0 A A • 

roofl + Sp (H0)2 jSp I~ 
(26) 

(In deriving this relation it has been assumed that 
tiw0/kT0 and ti~/kT* are small in magnitude.) 

As a consequence of the definitions (4) and (8) 
it is possible to substitute p" ( t) in place of p ( t) 
in the calculation of the mean values of H0 ( t) 
= Sp [ ftO p ( t)] and lz ( t) = Sp [ lz p ( t) 1. Taking 
Pst from Eq. (27) and Po from Eq. (6), we obtain 
when ~ = 0 

Sp (H0p0) = Sp (H0p8t), Sp (fzPst) = 0, 

because tiw0/kT0 and ti~/kT* are small and be­
cause Sp ( lzHo ) = 0, as can be verified by direct 
calculation. This means that the average value of 
the energy of the dipole-dipole interaction in the 
case ~ = 0 is not changed after the high-frequency 
field is turned on, and the average value of the 
projection of the total spin lz ( t) tends to zero in 
accordance with Eq. (1). 

A completely different situation arises in the 
case ~ ¢ 0. In this case the absorption of each 
quantum of the high frequency field is accompanied 
by a change of ti~ in the dipole-dipole energy. 
This process leads to a limitation of the absorbing 
capability of the spin system. As a consequence 
Iz ( t) no longer approaches zero, but 

I z = 1iroo fl2 
st kTo az + Sp (H")•/Sp ~~ 

(27) 
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Here Sp (:H0 )2/Sp Iz 2 ~ < w2>. where < w2 > is 
the second moment of the absorption line. Hence, 
for resonant frequencies within the absorption 
line, Iz st can attain values ~ Izo/2, whereas Eq. 
(1) gives zero for Iz st under these conditions. 
This contradiction is not accidental, because Eq. 
(1) does not take into account changes in the en­
ergy of the dipole-dipole interaction in the satura­
tion process, which leads to a cessation of absorp­
tion of high-frequency quanta at values of Iz that 
are different from zero. 

A comparison of the stationary solution, Eq. 
(25), with the initial value of the density matrix, 
Eq. (6), shows that the application of a sufficiently 
weak high-frequency field leads only to a change 
in the exponents of the coefficients for the opera­
tors Iz and ifo. This change in p1 ( t) is due to 
the strong disordering influence of the dipole­
dipole interaction. Before the application of the 
high-frequency field the magnetic dipoles of the 
spin system precess incoherently about the con­
stant magnetic field. Consequently .the components 
of transverse magnetization equal zero. 

The influence of the high-frequency field is 
manifest in the emergence of coherent precession 
of the magnetic moments, i.e., in the appearance 
of transverse components of magnetization Mx 
and My. The dipole-dipole interaction, on the 
other hand, tends to bring the spin system to a 
state of equilibrium with Mx = My = 0. Lowe and 
Norberg [7] measured directly the decay time of 
the transverse magnetization. It turned out to be 
equal to ~11/JLHloc· Therefore in the case of suf­
ficiently weak high frequency fields we can con­
sider, with an accuracy of ~ H1/Hloc• that the 
spin system will be characterized at every instant 
of time by an equilibrium partition function. The 
most general form of the equilibrium partition 
function is [sJ 

p1 (t) = exp (et (t) Iz + ~ (t) H0)/Sp exp(et (t) fz + ~ (t) ifo). 
{28) 

All of the foregoing has pertained to the case in 
which there is no contact between the spin system 
and the lattice. However it is obvious that all the 
above reasoning is appropriate also for the case 
li/JLHloc « T1 ( T1 is the spin-lattice relaxation 
time). Since this condition is fulfilled almost al­
ways in solids, we shall consider Eq. (28) as valid 
in solids even when spin-lattice interaction is 
present. 

It is easily seen that the form of the solution 
(28) incorporates solutions corresponding to the 
BPP equation as a special case. In fact, in the 
two-level BPP model it is assumed that the levels 
corresponding to the same projections Iz have the 

same populations in the saturation process. Such 
a population distribution is obtained if /3 ( t) is set 
equal to zero in Eq. (28). Then, from the equations 
introduced below [see (36) and (37) ], it is seen 
that for a value of Iz ( t) proportional to the popu­
lation difference of the levels, an equation of the 
BPP type is obtained. 

It is interesting to note that a density matrix of 
the form 

p1 (t) = C exp (et (t) Iz) (29) 

cannot, generally speaking, be a solution of Eq. 
(22) because the exact conservation law (23) is not 
obeyed when p1 ( t) is in the form (29). In fact, 
noting that the normalization condition Sp Pt ( t ) 
= 1 gives C = ( 2s + 1 )-N, where s is the spin of 
an individual particle and N is the total number 
of particles in the sample [ a ( t) and /3 ( t) can be 
considered small if the initial temperatures are 
not too low], we obtain 

a A Ns A2 at Sp (p1 (t) H) = et' (t) 'Iii:!.. (2s + 1)- pI z· (3 0) 

From the equality obtained it is obvious that the 
rigorous conservation law (23) is compatible with 
the form of the solution (29) and with the BPP 
equation corresponding to it only if .6. = 0. Conse­
quently the BPP equation can be considered correct 
only when D.= 0. This explains why the spin-lat­
tice relaxation times measured by Redfield in the 
course of using the BPP equation for the analysis 
of his experiment were found to be correct, in 
spite of the fact that the absorption line observed 
under strong saturation failed to coincide with the 
theoretical curve. The point is that the saturation 
curve was taken by Redfield precisely at D. = 0, 
where the BPP equation can be considered correct. 
But measuring the shape of the absorption line, 
associated with a transition in the region D. ~ 0 
in the strong saturation case, led Redfield per­
fectly naturally to results that were incompatible 
with the BPP equation. 

In order to determine a ( t) and /3 ( t) we shall 
calculate with the aid of Eq. (22) the derivative 

d A lt ( fl-Hl )2 (2 1)-N dT Sp p1 (t) I z = - 2 -li- s + 
XSp{P'lz [/:_A [/~\exp(a(t)lz+;3(i) H0)l)}. (31) 

Using the equalities 

it is easy to verify the relation 

[exp (a {t) lz + B {t) fl0), /~1 ] 

= exp (a (t) fz + ~ {t) flo) 1~1 (1 - exp {-a (t) 

+ 'Iii:!..~ (t))). 
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Considering the easily verified equality 

Sp (P' I~ rl~t.. A]) = - Sp (P' rl~t.. lzl A), (32) 

we further find 

di~Y) = _ T( 11:1 y (2s + 1)-N (a (t)- n~~ (t)) 
X Sp {F'l~t.l"6_1 exp (a (t) 12 + ~: (t)H0)}. (33) 

We note that in the right-hand member of this 
equation it is now possible to replace the exponen­
tial by unity, because of the smallness of a ( t) 
and (3 ( t) !fl. For the same reason we obtain for 
the average values of Iz ( t) and H0 ( t ) 

lz (t) =a (t) (2s + 1)-Nspl; =~a (t) Ns (s + 1), 

H0 (t) = ~ (t) (2s + 1)-N Sp (H0) 2 • (34) 

Substitution of a ( t) and (3 ( t) from these expres­
sions into Eq. (33) yields 

dl z (t)!dt = - (pBt/n)2 1tg (~) (I z (t) - y (t)), 

(t) = n~ Hr:_ (t) H2 == sp <lfo)2 
y Hz ' o S J'2 ' 

0 p " 
Sp (P'Jl j--.1) 

(~) = . -~ t. 
g 2Ns(s+1)(2s+1)N;3· 

(35) 

The expression for dy/dt is easily obtained, 
using the conservation law, Eq. (23): 

dH0 (t)/dt = -Ji~d/2 (t)ldt, 

dy (t)/dt = (n2~2/H~) 1tg (~) Uz (t)- y (t)). 

If we now take into account the spin-lattice relaxa­
tion in the manner of Bloembergen, Purcell, and 
Pound, [1] we arrive at the following system of 
equations: 

dl z (t)fdt = - (pB 1/n)2 1tg (~) (I z (t) 

- Y (f)) + Uoz- fz (t)}/T1, (36) 

dy (t)!dt = (n2~2/H~) (!lH1/n)2 1tg (~) Uz (t) 

- y (t)) + (y0 - y (t))/T~- (37) 

Here Ioz and Yo are the initial values of Iz ( t) and 
y ( t ), while Ti and T~ are the times for the spin­
lattice relaxation of Iz ( t) and H0 ( t ). 

For the energy absorbed per unit time in steady 
state we find, with the aid of these equations ( in 
our case Yo « Ioz), 

1iooe (L\) I oz 
(38) 

1 + e (L\) T1 (1 + 1i2 L\2T~/ H~T1) • 

In the case of strong saturation, when £ (D.) Ti 
» 1, we can neglect the ones in the denominator 
of Eq. (38), after which we obtain a relatively 
narrow Lorentz absorption line 

(39) 

In order of magnitude H~ equals ( 11H1oc )2• 

Redfield [2] has investigated nuclear magnetic 
resonance absorption in metals. Even with Hi 
= 0.4 oe he was able to observe the appearance of 
the narrow Lorentz absorption line. If, following[2], 
we take for aluminum T1 = 4 x 10-3 sec and 
21Tg ( 0) = 10-4 sec, then we find for the saturation 
parameter £ (D.) T1 "' 10. In other words, the field 
value H1 = 0.4 oe corresponds to the region of 
strong saturation and consequently the absorption 
line shape in correspondence to our Eq. (39) 
should be Lorentzian, just as Redfield observed. 

In order to investigate the behavior of the dis­
persion signal it is necessary to determine the 
non-diagonal part of the density matrix p2 ( t ). In 
order to determine p2 (t) we make ~se of Eq. (14). 
Although this equation was obtained for the case 
in which there is no contact between the spin sys­
tem and the lattice, it can be used also for the 
case 11/JLHloc « T1• The point is that the inclusion 
of such a weak spin-lattice interaction cannot have 
a significant influence on the rate of change of the 
off-diagonal matrix elements ( p2 ( t ))nm• equal to 
"' JLHlocffi. [ The rate of change with time of the 
diagonal matrix elements (Pi ( t ))nn for Hi « Hloc 
is very small, "'JLHf/tiHloc• as can be seen from 
Eq. (22), hence it is impossible to neglect the spin­
lattice interaction in the determination of the 
change with time of the function Pi ( t ). J 

If we carry out in Eq. (14) a power series ex­
pansion in the small quantity £ ( t ), as has already 
been done in the derivation of Eq. (22), andkeep 
only the terms of lowest order in Li ( t ), then we 
arrive at the equation 

t 

P2 (t) = - * ~ dt' [V (t'), P1 (t') J. (40) 
• 0 

The function p1 (t) is determined by Eqs. (36), 
(37), (34), and (28). Hence Eq. (40) gives the de­
sired non-diagonal part of the density matrix. To 
calculate the average values of Ix,y ( t) in the 
rotating coordinate system it is now necessary to 
determine the non-diagonal part of the density 
matrix P2 ( t) in the same system of coordinates. 
Using the rule for transforming to rotating co­
ordinates, Eq. (8), and the fact that Pi ( t) is 
diagonal, we obtain 

t 

p~ (t) = - * ~ dt' [V (t- t'), p1 (t')J. (41) 
0 

Using further the expansions (18), we find 
+oo t 

fx, y (t) = 114~1 i'!.±'/, ~ dw ~ dt' Sp {i>' J~, [/;;;\ p1 (t')l} 
-00 0 

X {exp [i (w- ~) (t- t')l 

=t= exp [i - (w - ~) (t - t') ]}. (42) 
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In the derivation of this relation use was made of 
the easily verified relations 

Sp {fi' 1:...,[1;:;;\ Ot (t')]} = -Sp {F'l;:;;' [}:._.,, "• (t')]}. 

Note that the function Pi ( t) changes significantly 
only in the time interval tiHlociJLHi, and the func­
tion 

+oo 
~ dw Sp {P'l:.."' rl;1, p1 (t')]} exp [i (w- ~) (t- t')l 

-00 

differs from zero only in the region I t - t' I 
~ ti/ J.!Hloc [ cf. derivation of Eq. (21)]. Hence in 
the integration over the time in the right member 
of Eq. (42) Pi ( t' ) can be considered a constant, 
equal to Pi ( t ), and the integration over t' ex­
tended to +oo. Changing further the variable of 
integration t' to t - t' and using the well known 
relation[9J 

~ d-reiw< = nl\ (w) + P ~ (43) 
0 

(the symbol P means that the integrals over w 
are to be taken in the sense of the principal value ), 
we obtain 

+oo 
fx,y(i)= f-14~1 ~ dwSp{P']:_.,[];:;;\p1(t)l} 

-00 

X i'/,±'/,{(nll (w- ~) + P w ~~) 

=F (nil (w- ~)- P - 1-· )l. 
w- ~ J (44) 

Substitution of Pi (t) from Eqs. (36), (37), (34), 
and (28) leads to 

fx (t) =- {j1H1/'fi) fz (i) J1 (~) + ( f1H~~(I) )J2 (~), (45) 

fy (t) = (flH1/1i) ng (~) Uz (t)- y (t)); 

+oo 
J (~) = P \ dwg (ro) 

1 .\ w-~, 
-00 

[the derivation of these equations is completely 
analogous to the derivation of Eq. (35).] 

Determining lz st and Yst from (36) and (37) 
we obtain for x~t and Xst the expressions 

, fl/xst f12l 0z { (1 +e(Ll)T~1i2Ll2 /lf~)Jl(~) 
'Xst = ~ =-21i 1 + e (~) T1 (1 + n•~• T~/ H~T1) 

e (~) T~ (li2~tH~) J2 (b) } 
(47) 

-1 + e (Ll) T1 (1 + 1i2~2T~IH~T1)- ' 

X" = f.lly st = fl•Ioz :rtg(~) , (48) 
st ZH1 21i 1+T1e(Ll)(1+1i2~2T 1/HgTI) 

As expected, Eq. (48) agrees with the expression 
for energy absorbed per unit time calculated 
earlier [see (38)]. In strong saturation at small 
values of b. the greatest term in the right mem-

ber of Eq. (47) is the second. Because of the 
presence of the additional factor ( 1 + ti 2b.2T1/H6T1)-1 

this term will lead to a more narrow dispersion 
line relative to the dispersion line in the absence 
of saturation. Such a narrowing of the dispersion 
line was actually observed by Redfield.[2] 

It is to be noted that for £(b.) T1 « 1 Eq. (47) 
goes over into the well known formula 

(49) 

For a comparison with the experimental data 
and theory of Redfield [2] we calculate ( d8tl d)= 0• 

Differentiating Eq. (47), we obtain for £ ( ~) Ti » 1 

. I • dXst _ f1 I oz 1i 
---;u;- - -4- -H--2 ' 

<l=O 0 

(50) 

in view of the equality dJ2 (~)/db. = 0. Comparison 
of this formula with Eq. (41) of Redfield's papei2J 
shows that our Eq. (50) transforms into Redfield's 
formula, which agrees well with experiment, when 
Hf «fiN = oH2, if, in correspondence with Redfield, 
it is assumed that the quantity y ( t ), quadratic in 
spin, relaxes under the influence of the lattice 
twice as fast as lz ( t ). (Redfield's theory is valid 
only in cases of very strong saturation.) 

In conclusion, the author thanks N. D. Sokolov 
for his interest in the work, and also V. L. Ginz­
burg, S. V. Tyablikov, and D. N. Zubarev for dis­
cussions of the results. 
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