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A general qualitative study has been carried out on the non-relativistic dispersion equation 
for extraordinary and plasma waves propagating in a plasma transversely to an external 
magnetic field. Frequency regions are established in which these waves can propagate with
out damping. An error is pointed out in the conclusion drawn by a number of authors that 
gaps of zero transmission can exist for waves of a given type in the vicinity of each.cyclo
tron resonance. The laws of behavior that are established are illustrated by the results of a 
numerical solution of the dispersion equation. 

INTRODUCTION 

~~is well known that two types of waves can exist 
in a homogeneous unbounded plasma located in a 
homogeneous external magnetic field lfo. The 
propagation direction of these waves is perpen
dicular to the field lfo. In the first place, one has 
a purely transverse wave with its electric vector 
polarized along the field Ho (the ordinary wave) 
and, in the second place, one has waves in which 
the electric vector is polarized perpendicular to 
Ho (the extraordinary and plasma waves). In our 
previous research,[t] a general qualitative study 
was carried out on the dispersion equation for the 
ordinary wave. The present work is devoted to the 
investigation of the dispersion equation for the ex
traordinary and plasma waves. 

The equation that connects the frequency w 
with the propagation constant k has the following 
form: 

Here £ij ( k, w ) are the components of the dielec
tric permittivity tensor. In the non-relativistic 
case and for the unperturbed Maxwellian electron 
distribution function, 

£ 11 = l + +(A + 28 + C), 

e22 = l + +(A -- 28 + C), 

e12 =- e21 =f i (A- C); (2) 

A (k, w) = C (k, - w) 

2w~ 00 , ( 00 )-1 
= 000011 :2] gn-1 (JJ.) + !l~n-1 (!l)) n- OJ;; 

n.=---<10 

(!) 
x cos-- (-r- n) d-r, 

WH 

where w0 = ..J 4'11'N0e2/m is the plasma frequency, 

(3) 

(4) 

{3 = eH0 /me is the Larmor frequency, IJ. = Tk2 /mwiJ, 
T is the electron temperature in energy units, 
tn (IJ.) = e-IJ. In (IJ. ), and In (IJ.) is the Bessel func
tion of imaginary argument. 

Equation (1) was first obtained by Gross [2] on 
the basis of simultaneous consideration of the non
relativistic kinetic equation for electrons and the 
set of Maxwell equations. It has since been 
studied by many authors.[4-tO] A characteristic 
feature of the method employed was the prelimi
nary expansion of the equation in powers of some 
parameter, assumed to be small. It is usually 
assumed that IJ. «.1. However, such an approach 
has a number of important weaknesses, the most 
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important of which are the following: 1) in re
placing the transcendental equation (1) by a simpli
fied algebraic equation, certain roots are lost; 2) 
the expansions in a small parameter in the vicinity 
of cyclotron resonances are non-uniform; there
fore, the behavior of the roots of the complete and 
simplified equations can differ significantly in the 
neighborhood of the resonances. The higher cyclo
tron resonances are not generally taken into ac
count in the simplified equations. 

The analytic formulas thus obtained from the 
simplified equation have at best a limited region of 
application, and are seen to be invalid as a rule in 
the neighborhood of resonances. In attempting to 
draw general conclusions on the properties of 
Eq. (1) with the help of formulas of an appropriate 
type, it is easy to make a mistake. As an example, 
we shall point out an incorrect conclusion of a 
number of authors [2 •5] as to the existence (in the 
neighborhood of a cyclotron resonance ) of gaps of 
zero transmission for the extraordinary and 
plasma waves. This conclusion is based on the in
correct use (in the neighborhood of the resonance) 
of formulas obtained by an expansion in terms of 
some small parameter. In the same way, the 
curves for the index of refraction of the extraor
dinary wave, found by Drummond[B] as a result of 
numerical solution of the simplified equation, are 
valid only far from cyclotron resonance. 

In particular, the problem of plasma waves 
should be considered in some detail. By taking it 
into account that k2 is generally large for these 
waves, one can write down the following approxi
mate equation for them:[2,3] 

e11 (k, w) = 0 (5) 

(it can be shown that the transition from Eq. (1) to 
Eq. (5) corresponds to the assumption of a purely 
longitudinal character for the plasma wave). For 
plasma waves, k- oo as T- 0; in this case, the 
parameter 1J. is, for all frequencies, a quantity 
either of the order of, or larger than, unity. 
Therefore, the results of the study of plasma 
waves by expansion of Eq. (1) in powers of IJ. have 
a very limited region of application. Thus the 
formula for the index of refraction of the plasma 
wave obtained by this method in a number of 
works [4-6] is qualitatively valid for WH < w < 2WH 
and is shown to be completely invalid for w > 2wH. 

In the work of Bernstein,C 7J an attempt was made 
to show the existence of gaps of zero transmission 
for the plasma wave in the vicinity of each cyclo
tron resonance, by working with the abbreviated 
Eq. (5) without having recourse to other simplifying 

assumptions. However, in the course of the proof, 
the author made the following logical error. Equa
tion (5) can be written in the form k2 = F (k, w) 
[ Eq. (48) in [ 7J ] . For fixed k, the function F is an 
alternating function of w, negative in a certain 
neighborhood of the resonance. Therefore, Bern
stein[7J drew the conclusion that these regions are 
zero-transmission gaps for the plasma wave, inas
much as for such frequencies, as it were, Eq. (5) 
cannot have real roots in k. However, the param
eter k in Eq. (5) is in fact not fixed, but is a func
tion of w, defined by the same dispersion equation 
(5). The function F ( k ( w), w) can remain positive 
in any arbitrary neighborhood of resonance. Thus 
the discussions of Bernstein prove nothing. 

In the present paper, the authors aimed at car
rying out a detailed qualitative study of Eqs. (1) 
and (5) without additional simplifying assumptions 
other than the non-relativistic condition. Initially, 
Eq. (1) is considered from the viewpoint of the de
termination of the propagation constant k for a 
given real frequency w. Regions of the frequency 
w are established in which there exist real roots 
k = k ( w) (the transmission region of the plasma 
for waves of a given type). In particular, it is 
shown that for WH < w < w* < .../ wiJ + w~ the disper
sion equation has a real root k ( w), to which cor
responds a plasma wave propagating without ab
sorption ( w* is the point of coincidence of the 
roots for the extraordinary and plasma waves, 
located somewhat to the left of the hybrid frequency 
.../ wif + w3). The established rules are illustrated 
by the results of a numerical solution of Eq. (1) 
for different values of the electron temperature 
and the plasma density. It is seen from a numer
ical calculation that the plasma roots of Eq. (1) 
can be formed from a solution of the abbreviated 
Eq. (5) with a high degree of accuracy. There
sults become invalid only in the vicinity of the 
hybrid frequency .../ wif + wij. It is established that 
Eq. (1) has an infinite set of complex roots k 
= k ( w) in addition to the real roots. In Eq. (5) of 
the present work, the dispersion equation is con
sidered as an equation which determines the fre
quency w as a function of the wave number k. It 
is shown that there exists an infinite set of real 
roots w = w ( k), while the complex roots w = w ( k) 
are lacking in Eq. (1). 

1. PRELIMINARY INVESTIGATION OF THE DIS
PERSION EQUATION 

We shall begin our study of Eq. (1) with the 
study of the case in which one is required to deter-
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mine the propagation constant k for a given fre
quency w. We introduce the dimensionless varia
bles: s = k2c2 / w2 = N2 is the square of the index of 
refraction, a = wlwH, {3 = w0/wH, y = T/mc 2; then 
Eq. (1) takes the form 

D (s, IX,~. r) = s [1 ++(a +2b +c)] 

(6) 

where a= a (s, a, {3, y), b = b (s,. a, {3, y), c 
= c ( s, a, {3, y) are the functions (3) and (4) in the 
new variables. 

We shall seek roots of Eq. (6), s = s (a, {3, y), 
for all possible real values of a (a ¢ n). To 
begin with, we analyze the real roots (Sees. 1-3), 
which we do in a fashion similar to [ 1 J. For this 
purpose we first compare the signs of the function 
D for s = 0 and s = ± 00 , and then compare Eq. (6) 
and the degenerate equation corresponding to zero 
temperature of the electrons ( T = 0, y = 0). 

1. By direct calculation, we find that 

D (0, a, ~. r) = -(1- :x (:.:_1) )( 1- a(a~: 1)} (7) 

At the same time, we can show that the behavior 
of the function D as Is I- oo is determined by the 
asymptotic formula 

~ :rt~' 
D (s, a, ~. r) ~ s - 2 sin• ct:rt (8) 

Thus, 

limD (s, a, ~. r) = oo, lim D (s, a,~. r) =- oo. 
s---+-roo s-+-oo 

Taking this into account, we can conclude that 
when D ( 0, a, {3, y) < 0 Eq. (6) has an odd number 
of positive roots and an even number of negative 
roots and, conversely, when D ( 0, a, {3, y) > 0, 
Eq. (6) has an even number of positive and an odd 
number of negative roots. 

2. Substituting y = 0 ( T = 0) in Eq. (6), we ob
tain the degenerate equation 

D(s,a, ~.0) = s[1-a2 ~_:_ 1 ] 

- 1--- 1--- -0 [ ~· J [ j32 J ct(ct-1) ct(ct+1)-. 
(9) 

We note three characteristic points of this equa
tion, which correspond to the vanishing of each of 
the square brackets in (9): 

a' =-+++Y1+4~2 , a"=a'+1, a 0 =YT+f32 
(a' < a0 < a•, a0 > 1). (10) 

The root s 0 = s 0 ( a{3) of Eq. (9) is positive for 
a' < a < a 0 and a" < a, negative for 0 < a < a' 
and a 0 < a < Ot-" • As a - a 0, we have I so I - 00 • 

Equation (6) is non-relativistic, and is there
fore meaningful only at sufficiently small values 
of y. As y---+ 0, the roots of Eq. (6) either ap
proach the root of the degenerate equation or 
diverge to infinity. The corresponding waves are 
called extraordinary in the first case and plasma 
in the second. [G] 

2. POSITIVE ROOTS OF EQUATION (6) IN THE 
NON-RESONANT REGION 

We shall investigate the positive roots of 
Eq. (6) for values of a far from the integral values 
(non-resonant regions of frequency). In accord 
with (7), the function D ( 0, a, {3, y) changes sign 
when a = 1, a = a', a = a". Two cases are 
possible here, a' < 1 and a' > 1. We shall con
sider them separately. 

1. a'< 1 (i.e., ~ij < 2wi:J). Comparing the data 
given in the first two rows of Table I, for 0 < a 
< 1 and a 0 < a, we see that the minimum possible 
number of positive roots of Eq. (6) coincides with 
the number of positive roots of Eq. (9). It is 
natural to expect that, at sufficiently small values 
of y and values of a belonging to the intervals 
shown and far from the integral values, the transi
tion from Eq. (9) to Eq. (6) does not lead to the ap
pearance of new positive roots. This conclusion 
is supported by the results of a numerical solution 
of Eq. (6) (see Figs. 1-3). Thus, Eq. (6) has no 
positive roots for 0 < a < a' and a 0 < a < a", and 
has a single positive root (extraordinary wave) 
for a' < a < 1 and a" < a. 

We now turn to the interval 1 < a < a 0• Equa
tion (6) should have a positive root inside this 
range, close to the root of the degenerate equation 
(9) (extraordinary wave). Since the total number 
of positive roots of Eq. (6) is even in this interval, 
Eq. (6) should still have one positive root which 
goes to infinity as y- 0 (the plasma wave). The 
results of a numerical solution of Eq. (6) show 
that in the approach to the point a 0 from the left, 
the roots corresponding to the extraordinary and 
plasma waves combine. In this case, in the region 
between the point of coincidence of a* and a 0, 

Eq. (6) no longer has positive roots. The number 
of positive roots of Eq. (6) is shown in the third 
row of Table I. The capital letters E and P de
note the wave to which the root corresponds, extra
ordinary or plasma. It should be noted that the 
data of Table I (as also of Table II) are invalid 
for the immediate vicinity of integral values of a, 
at which the formulated conclusions do not follow. 
The problem of the number of roots and their be
havior in the resonant regions will be discussed in 
Sec. 3. 
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2. o/ > 1 (i.e., w~ > 2wi.). This case can be 
studied in a way similar to the above. The neces
sary data and the results of the investigation are 
given in Table II. As in the first case, propagation 
of the plasma wave is possible for 1 < a < a* 
< a 0, while only the plasma wave is propagated in 
the portion 1 < a < a' . 

The results of a numerical solution of Eq. (6) 
are given in Figs. 1-3. The positive and negative 
ordinates correspond to N = Ts and iN= r-B, 
respectively. The results of numerical solution of 
the abbreviated dispersion equation for the plasma 
wave (5) are shown dotted. The equation is written 
in corresponding dimensionless variables. The 

O,QZ 

~::()! 

O,CZ 

FIG. 1. Dependence of the index of re
fraction on the frequency for different val
ues of y with {32 = 1.2. 

FIG. 2. Dependence of the index of refrac
tion on the frequency for different values of y 
with /32 = 2.25. 

FIG. 3. Dependence of the index of 
refracti~n on the frequency for different 
values of y with {32 = 17.6. 

positive root corresponding to the plasma wave 
and the point a* where this root becomes equal 
to the root of the extraordinary wave are clearly 
seen in all the drawings. This point is located to 
the left of a 0• Calculations that have been carried 
out show that the plasma wave is "quasi
longitudinal" (the ratio of the longitudinal compo
nent of the electric field to the transverse compo
nent is of the order of 10-103 ). In this way, the 
excellent agreement of the results of the solution 
of the complete and abbreviated equations is ex
plained everywhere except in the vicinity of the 
point a*, where the "quasi-longitudinal" charac
ter becomes worse. 
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Table I 

Range of ex 0-ex I ex 1-l l-ex* 

Parity of the number even odd even 
of positive roots 
of Eq. (6) 

Number of positive 0 1 1 
roots of (9) 

Number of positive 0 l,E 2,E,P 
roots of (6) 

Table U 

ex*-ex0 exo -ex II ex11<ex 

even even odd 

1 0 1 

0 0 l,E 

when a = n, and terms which vanish as J.l. - 0. 
Thus, when a Rl n, 

a= 2~2 [ ~n-1 (fl.)+ fl.t:-1 (fl.) + t;o (fl.) J 
~ n-~ 1-~ ' 

C = 2~2 [ ~n+I (fl.)+ tlb:+t (fl.) 
~ n-~ 

bo J - 1+~ • 

b = 2~2 fl.b: (fl.) . 
~ n-~ 

(12) 

If n = 1, then the first term in the formula for a 
should be omitted. 

Substituting (12) in (6), we get a simplified 

Range of ex 0-1 l-ex I ex l-ex* 

Parity of the number even odd even 
of positive roots 
of Eq. (6) 

Number of positive 0 0 1 

ex*-exo exo -ex 

even even 

1 0 

II a >.a 

odd 

1 

11 equation describing the behavior of the roots near 
the n-th resonance. We consider first the large 
positive roots. For this purpose, we replace the 
functions l; n (J.J. ) by their asymptotic forms as J.J. 

- 00 , As a result, the equation takes the form 
roots of (9) 

Number of positive 0 l,P 2,E,P 0 0 l,E 
roots of (6) 

The temperature of the electrons T and the 
wave number k enter into the equation for the 
plasma wave (5) only in the form of the combination 
J.J. = Tk2/mwk. Therefore, for those values of a 
for which the plasma root of Eq. (6) is well de
scribed by Eq. (5), the index of refraction of the 
plasma wave is inversely proportional to the square 
root of the temperature: 

N (IX, ~. r)/ N (IX, ~. r') = Y T' fT. (11) 

This fact can be employed for the experimental de
termination of the electron temperature in the 
plasma by measurement of the phase velocity of 
the plasma wave. We note that dk/dw < 0 for the 
plasma wave, i.e., it possesses anomalous 
dispersion. 

The negative roots of Eq. (6) can be considered 
in an entirely similar manner. We shall not dwell 
on the details of this study, but shall limit our
selves to the results of a numerical calculation, 
which are given in Figs. 1-3. 

3. THE BEHAVIOR OF THE POSITIVE ROOTS 
OF EQUATION (6) IN THE NEIGHBORHOOD 
OF RESONANCE 

The resonance points a = n are the singularities 
of the function D ( s, a, {3, y ). It can be shown that 
as a- n the real roots of Eq. (6) should tend 
either to zero or to + 00 • Proceeding to a more 
detailed study of the behavior of the roots near the 
resonances, we first note that when a Rl n the 
principal role in Eqs. (3) and (4) will be played by 
two types of terms: terms having a singularity 

z2 + z- r = 0, (13) 

where z = ...f2i{3-2n2 ( n- a) y¥2s312. It then follows 
that on each side of the resonant point a = n there 
is a positive root that goes to infinity as a - n. 
Thus, for a < n, 

(14) 

and for a > n, 

(15) 

Inasmuch as the simplified Eq. (5) has a root 
with the asymptote (15), the plasma wave corre
sponds to this root. The extraordinary wave cor
responds to the root with the asymptote (4), which 
is located to the left of the resonances (there are 
similar roots for the dispersion equation for the 
ordinary wave[i] ). 

We now turn to the investigation of the roots 
that tend to zero as a-n. For this purpose, we 
expand the function l; n (J.J.) in the simplified equa
tion in a power series in J.l. and keep only the 
principal terms. In the consideration of the small 
roots, it is convenient to distinguish six cases: 
1) a' < 1: a) n = 1, b) n > 1 (in this case, n > a"); 
2) a' > 1: a) n = 1, b) 1 < n < a', c) a' < n < a", 
d) a" < n. 

We shall not stop to study these individually, 
but only write out the final results. For n = 1, a 
positive root exists on one side of the resonance 
point, which tends to zero as a -1. For a' > 1, 
it is located to the left of the point a = 1, for a' 
< 1, to the right. For all the remaining resonant 
points a = n > 1 there exist pairs of positive roots 
which tend to zero as a - n. In this case, both 
roots approach the resonant point from the left if 
1 < n < a' (case 2b); both roots approach from 
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the right if a" < n (cases 1 b and 2d); one root 
approaches from the left, and the other from the 
right if a' < n < a" (case 2c). 

The total number of positive roots near reso
nance, may exceed that shown in Tables I and II. 
For example, there are three positive roots [one 
large (15) and two small] to the right of the reso
nances located in the region a" > a instead of the 
one that follows from Tables I and II. Conse
quently, at large distances from the resonances, 
the extra roots should join together and vanish, 
producing a pair of complex roots. 

The distribution of the additional roots is as 
follows. To the left of each resonance, located in 
the region of zero-transmission of the plasma for 
the extraordinary wave, which was shown in 
Tables I and II, there is a band of frequencies 
where Eq. (6) has a pair of positive roots for the 
extraordinary wave. As a-n- 0 one of these 
approaches zero while the other (14) goes to 
infinity. In the same way, to the right of each 
resonance located in the zero-transmission region 
of the plasma, for the plasma wave which was 
shown in Tables I and II, there is a band of fre
quencies where Eq. (6) has a pair of positive roots 
for the plasma wave. As a-n+ 0, one of these 
approaches zero and the other (15) infinity. 

It should be particularly noted that there are 
always regions on both sides of an arbitrary reso
nance in which Eq. (6) has at least one positive 
root. Thus the conclusion of Gross and a number 
of other authors[2 •5•7J on the existence of gaps of 
zero transmission (for the non-relativistic dis
persion equation) in the vicinity of each resonance 
appears to be in error. All the established laws 
are demonstrated in Figs. 1-3. The special fea
tures in the behavior of the negative roots in the 
vicinity of the resonances are also shown there. 

In conclusion, we shall show that even at low 
electron temperatures relativistic effects begin 
to appear in the vicinity of the resonances. In the 
present paper we shall not concern ourselves with 
the detailed analysis of the relativistic dispersion 
equation obtained by Trubnikov.[ll] We only note 
that if a belongs to the interval ( n- 1 ) < a < n, 
then the order of the relativistic effects (for exam
ple, the absorption associated with the Doppler ef
fect) is determined by a factor of the form 
exp{- mc2 [ (nwHiw )2 - 1 ]/T }. Thus, for non
relativistic plasma, the relativistic effects manifest 
themselves primarily in the appearance of a narrow 
band of strong absorption to the left of each reso
nance (of width a a ~ y ) . For the remaining 
values of a, the relativistic corrections are ex
ponentially small. 

4. COMPLEX ROOTS OF EQUATION (6) 

The study of the complex roots of Eq. (6) can be 
carried out by the method set forth in [ 1 J • Applying 
the principle of the argument, and taking into ac
count the asymptotic formula (8), it is easy to show 
that the function D has an infinite set of roots in 
the plane of the complex variable s. These roots 
are grouped into the second and third quadrants, 
near the imaginary axis. Each complex root of 
Eq. (6), together with the complex conjugate root 
corresponding to it, gives a quartet of complex 
roots of Eq. (1): 

k = p (ffi) ± iq (ffi), k = - p (ffi) ± iq (ffi). 

5. DETERMINATION OF THE FREQUENCY AS A 
FUNCTION OF THE PROPAGATION CONSTANT 
FROM THE DISPERSION EQUATION (1) 

We now consider the Eq. (1) from another point 
of view, when it is required to determine the fre
quency w for a given real propagation constant k. 
The real roots of Eq. (1) w = w (k) are found by 
the points of intersection of the line N = kc/ WHO! 

with the graph of the function N = .../ s (a, P, y): to 
each point of intersection (an, Nn) there corre
sponds a pair of roots wn = ±WHCin. The analysis 
carried out in Sees. 2 and 3 shows that the number 
of points of intersection is infinitely great, while 
their abscissas an (n = 1, 2, 3, ... ) are distributed 
in the following fashion: 

0 < a1 <I, n < a2,. < ~n+I < n + I (n > 1). 
Making use of the argument principle, it is not 

difficult to show that Eq. (1) does not have complex 
roots w = w (k). In proof of this assertion, one 
must keep it in mind that the function D (k, w) is 
regular at the point w = 0, has a pole of second 
order at the points w = ± nwH and that there are 
4n + 2 zeros on the real axis in the plane of the 
complex variable s inside a circle of sufficiently 
small radius. 

The authors express their gratitude to A. A. 
Chechina for help in carrying out the calculations. 
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