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Relaxation of the uniform precession of the magnetization of an antiferromagnetic substance 
due to the interaction between the uniform precession and spin waves is considered. The 
model of localized spins with exchange interaction was employed in the calculations. Terms 
of the fourth order in the creation and annihilation operators were taken into account in the 
Hamiltonian. The relaxation time for uniform precession at low temperatures has been 
derived. 

1. INTRODUCTION 

WHILE the theory of line width in ferromagnetic 
resonance has progressed conside·rably, [t,2] the 
line width in antiferromagnetic resonance has not 
to date received any explanation that is at all sat
isfactory. 

. The object of the present paper consists of 
evaluating the linewidth (or the relaxation time 
associated with it) resulting from the interaction 
of the uniform precession of the magnetization 
with spin waves. A similar interaction in the case 
of ferromagnetic substances has been discussed 
in the papers by Akhiezer and co-workers. [2] How
ever, the line width in the case of ferromagnetic 
substances turns out to be very small. This is 
associated with the fact that the interaction of 
spin waves with uniform precession (in the fer
romagnetic case) is due to comparatively small 
relativistic effects, while the exchange interaction 
does not affect uniform precession. In the case of 
an antiferromagnetic substance the exchange in
teraction turns out to be the dominant one in the 
calculation of the relaxation brought about by the 
interaction between the uniform precession and 
spin waves, and, as will be seen from our esti
mates, leads to an appreciable line width. 

2. THE INTERACTION HAMILTONIAN 

We shall write the Hamiltonian for a system 
of spins in an antiferromagnetic substance in the 
following form* (cf., for example, [3]) 

*We n~te that if the energy associated with the anisotropy 
is taken into account in a more general form (cf., for ex
ample,(2]) than in (1), then this leads to the appearance in (4) 
of a number of additional terms. However, it can be easily 
seen that some of these terms describe processes for which 

Jf = 2J ~ StSm + g~H A(~ Sf:-] S:'r,). (1) 
«m> l m 

Here Sz and Sm are spin operators of the first 
and the second sublattices respectively, ( Zm) de
notes summation over the nearest neighbors, the 
exchange integral is J > 0, HA is the effective 
anisotropic field (for simplicity we shall assume 
that there is no external magnetic field). 

Further, we express Sz and Sm in the usual 
manner in terms of the spin deviation operators, 
restricting ourselves to terms of order not higher 
than the third: 

st = (2S)'1• (1- a;a1 /4S) az, S! = (2S)'1• a; (1- a;ad4S), 

S/ = S- a;a1, Si;, = (2S)'1·b~ (1- b~,bm14S), 

s;;, = (2S(' (1- b;,bmi4S) bm, S~, =- S + b;,bm, 

Si';;. = S7m ± iSYm. (2) 

After these operators have been substituted into (1) 
the Hamiltonian can be separated into a sum of 
second- and fourth-order terms in the operators 
a and b. The second-order terms are subse
quently diagonalized. They represent the unper
turbed Hamiltonian for the spin waves. The fourth
order terms represent the interaction energy of 
the spin waves: 

+ b~b~bma;) + a;atb~bm}. 
We next transform to the Fourier components 

of the operators a and b: 

the law of conservation of energy does not hold, while the 
others have no effect on the uniform precession. From this it 
is clear that a more complete method of taking anisotropy into 
account, as has been done, in particular, by Akhiezer et al,[2] 
turns out to be superfluous in our calculation. 
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a, = (2 IN)'!, ~ake-ikl, 
k 

bm = {2 I N)'1• ~ bkikm, 
k 

a; = (2 I N)'1• ~ a~e+ikl, 
k 

b~ == (2/ N)'/z ~ b~ e-ikm. 
k 

The Hamiltonian :JC' can be put in the form 

1 ~-, 
Yk = _ Y eik (1-m) 

z "'-! ' 
(lm) 

where 2z is the number of nearest spins. 
We diagonalize the second order terms by in

troducing new variables: 

ak = ak ch 6k - ~~ sh 6k, bk =-a~ sh 6k + ~k ch 6k, 

(3)*' 

where tanh 28k = Yk:/D; D = 1 + g/3HA/zJS. This 
operation, analogous to the Holstein-Primakoff[4J 
transformation brings the interaction Hamiltonian 
into the form 

(4) 

Here we have omitted terms of the type 0!10!2/31/32 
which cannot correspond to processes in which the 
energy of the spin waves is conserved. In formula 
(4) we have introduced the notation 

We shall not in future need the specific form of the 
coefficients 4> and '.II, and, therefore, we do not 
give them here. We merely note that the omitted 
coefficients do n.ot exceed A. in order of magnitude. 

The quantities A.m2<3>4 and A-12<34> are of the 
form 
1.;1)2(3)4 = y, (sh 61 sh 62 ch Sash 04 + ch 01 ch 62 sh 03 ch 64) 

- 2y1_ 2 ch 61 ch 02 ch 68 ch 64 , 

A.~2<3><4> = Y4 (sh 61 ch 62 sh 63 sh 04 + ch 01 sh 62 ch 63 ch 64 ) 

- 2y1_ 2 ch 61 ch 82 sh 63 ch 64 , 

where y 1_2 = 'Yk1-~; A." are obtained from the 
corresponding A.' by the substitutions cosh 9i 
- sinh 9i and sinh 9i - cosh 9i. 

3. RELAXATION PROCESSES 

The Hamiltonian (4) is responsible for the in
teraction of the spin waves. We note that this 
Hamiltonian satisfies Van Hove's condition of di
agonal singularity. [5] This enables us in discus-

*ch = cosh, sh = sinh. 

sing the relaxation processes to utilize the ordi
nary method involving probabilities per unit time. 
We shall now consider the relaxation of the uniform 
precession of the magnetization which is, in par
ticular, represented by the operators a0 and at
In carrying this out we assume that the spin waves 
are in the state of thermodynamic equilibrium at 
the temperature T. We obtain the probabilities 
for the occurrence of processes involving a change 
in the number of spin waves and containing the 
operator O!k: 

W (n1o n2, na, n, ---+ n1 - 1, n2 + 1, n3 + 1, n4 - 1) 

2n e2 
= -;; 4Z~ 1 <D1(23)4+lD1(32)4 +ID4(23)1 +<1>4(32)1 +<D3(11)2 

W (n1o n2, n;, n~ -+n1 +1, n2-1, n~ + 1, n~- 1) 

(5) 

2 

= ~n :~ I A12s4 + A.214al~ tl (ki + k,- k2- k3) 6 (e1 

(7) 

Here Eex = 2Jz, the primed quantities refer to spin 
waves described by the operators /3; nk and nk: 
are the mean numbers of a- and /3-spin waves in 
the state of momentum k; Ek and Ek are the en
ergies of magnons of momentum k. 

In the rest of the paper we restrict ourselves 
to the low temperature case 

kT <eo. (8) 
In this case we can neglect processes of type (5) 
since the corresponding matrix elements vanish. 
The contribution made by processes (6) will be 
small, since in order to satisfy the law of conser
vation of energy it is necessary that one of the 
Ek should be greater than 3€0, and this corre
sponds to a relatively small value of nk if condi
tion (8) is satisfied. Thus, the principal contribu
tion to the line width is made by processes of type 
(7). This leads to the following equation for the 
relaxation of the uniform precession of the mag
netization: 
n0 = ~ (W (n0 , n2 , n;, n~ ___, n0 + 1.n2- 1, n;- 1, n~ -1) 

234 

- W (n0 , n2 , n;, n~ _. n0 - 1, n2 + 1, n;l_ 1, n~+ 1)] 

+ ~ [ W (n1 - 1, n0 , n;- 1, n~ + 1 ~ n1, n0 + 1, n;, n~) 
134 

- W (n1, n0 , n;, n~---+ n1 + 1, n0 - 1, n; +1, n~ -1)]. 
(9) 
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Here we have everywhere taken nk~ = fik 
= 1/[exp (Ek/kT)- 1]. 

Equation (9) can be written in the form 

rio =- A. (no- no). 
A. - 1 is equal to the average relaxation time of uni
form precession. It can be easily obtained from 
(7) and (9) that 

A. = ~ e!x ~I Ao234 + A2o4sl 2 6 (k,- ka - k2) 6 (80 - 82 
1i N 2 234 

(10) 

By utilizing the expression for A-iklm• we obtain 

I Ao234 + A2o4sl2 = D 2e!xl k1k2f2l2 I 80828s84, (11) 

where E~ = E~x (hA + k2l2/3 ); hA = g,BHA/zJS, 
l is the lattice constant, and we have taken into 
account the fact that k •1 « 1. 

We carry out the summation over k4, replace 
the summation over k2 and k3 by integration, sub
stitute (11), integrate over the angles 82, cp 1, cp2, 
and as a result obtain 
A. = 27 ~ (e;- e~) '1• (ei- £~) '1• cos2 6 d6 sin 6 

1i (2:rt)3 £~X~ • £o83+2 

X e-•o'kT 6 ( 8o - 82 + 83 - 83+2) de3 de2• (12) 

Here €3+2 = Ek3+k2 and D2 Rj 1. In going over from 
formula (10) to formula (12) we have taken into ac
count condition (8), and we have retained only the 
term n3 Rj exp (- E3/kT ). Integration over E2 re
duces, as follows from the presence of the 6-func
tion, to the replacement 

82 = 8 Es + Eo+ cos2 6 (sa- Eo) 
0 Ea + £o-cos2 6 (sa-Eo) ' 

Es (Eo+ 8s) sin2 6 + 2£~ cos2 6 
83+2 = £s+eo-cos2 6 (ea..:.:~ 

From the condition E2+3 < E3 (since Eo< E2) we 
obtain 

n/2 < 6 < n. 

After integrating over 8 and €3 we finally obtain 

A. e-x, 
roo= h~ -;s-(16x~ + 30~ + 46x~ + 54xo+ 37), 

0 

where Ko = ( E0/kT ), hA = g,BHA/zJS = HAIHE, 
HE is the intensity of the "exchange force field," 
Wo = E0/li is the antiferromagnetic resonance 
frequency. 

We give estimates of A. for the case of. MnF2• 

In this case [6] HA = 9 x 103 gauss; HE= 6 x 105 
gauss, and at T = 6° K, A. = 160 gauss, at T = 4° K, 
A.= 12 gauss, i.e., even at such low temperatures 
considerable broadening is present. It is obvious 
that at higher temperatures the line width increases. 
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