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The problem of the conditions for self-excitation is considered for devices of the type of a 
molecular generator with a resonating cavity with dimensions much larger than the gener­
ated wavelength. The problem is solved by the method of expansion in terms of eigenfunc­
tions of the cavity with ideally conducting walls. The limits of applicability of the results 
to real cavities are estimated. 

THE study of features of the operation of quantum­
mechanical generators and amplifiers that use res­
onating cavities of dimensions much larger than the 
wavelength has become interesting because of the 
practical development of such devices in the op­
tical range of wavelengths (lasers). [t,2] One 
particularly important question is that of the con­
ditions for self-excitation of a laser. Calculations 
on this have been made by Schawlow and Townes. [a] 

The problem can, however, be treated by much 
more rigorous methods than those used by the 
authors of [a] . 

Let us consider a system of weakly interacting 
molecules* with two energy levels, which com­
pletely fills the resonating cavity. t The state of 
the system is characterized by the density of the 
energy spin s (r, t), whose components s 1, sa_, 
and s 3 obey the following equations of motion LS]: 

. 1 '1 "'' St + ffioSz + Tz St + ·y .iJ A~-. (r) e2s3ql.. = 0, 

" . 1 1 ~ 
S2 - WoSt + T s2 -- T .iJ A1.. (r) e1s~q~.. = 0, 

2 "A 

I o 1 ~ 
s~ y-; (s,- s~)- T .iJ A~. (r) (e1s2 - e2s1) q~.; 

" 
q: -l ;~ q" + ffi~_q~. = ~A,. (r) (e1s1 + e 2s 2) dV. (1) 

Vc 

Here w0 is the frequency of the molecular transi-
tion, WA. are the natural frequencies of the reso­
nator, QA, are the quality factors corresponding 
to these frequencies, T1 and T2 are the Bloch re­
laxation times, and e1 and e 2 are vector molecu-

*By molecules we here mean any quantum-mechanical 
objects with two levels. 

tThe disk type of resonator used in practice is not a 
closed system, but for the main modes of oscillation the field 
is practically all concentrated in the space between the 
disks. This is confirmed by calculations made by Fox and 
Li[•]. Therefore our analysis includes the case of disk res­
onators. 

lar constants. These constants can be expressed 
in terms of the matrix elements of the dipole mo­
ment. According to [SJ 

(2) 

where {i. is the operator for the dipole moment of 
the molecule, and r 1 and r 2 are spin matrices. In 
the representation in which the energy operator of 
the isolated molecule is diagonal we have 

1 10 1·) 1 ,0 -i) 
't = 2 \1 0, ' '2 = 2 ~i o , . 

The relation (2) gives the connection between e1 

and e2 and the matrix elements of {i. calculated 
with the eigenfunctions of the energy operator of 
the isolated molecule: 

We note by the way that the oscillating part of the 
mean dipole moment is linearly polarized only in 
cases in which e1 and e2 are collinear. In fact, 

<'PI~I'P)osc= <c1\jl1 + c2\f2\~\c1\jl1 + C2'iJ2) 

(4) 

and it becomes obvious that our assertion is cor­
rect when one substitutes JJ12 and IJ2t from Eq. (3) 
into Eq. (4). 

In writing out the system (1) we have used the 
expansion of the vector potential of the electro­
magnetic field in terms of the eigenfunctions of 
the resonator: 

A (r, t) = ~AA(r) q" (t), \ AidV = 4l'te2 • (5) 
f.. ~c 

Let us introduce the notation 

A"Aet!n = a1,., A,.e2/1i = ut"A, az,. - io.1~. = a."A (6) 

and make the change of variables s 1 + is2 = P 1, 

s 1 - is2 = P 2; the system (1) then takes the form 
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F\ + (T;-1 - iw0) P1 + ~aAqAs3 = 0, 
A 

(7a) 

P 2 + (T;-1 + iw0) P2 + ~ a~q~..sa = 0, (7b) 
A 

s~3 = ; (s~- sa) + + ~ (P~a~ + P2a~..) qA, (7c) 
1 A 

·· w~. · • in \' • P dV (7d) q" + Q q" + w1,q~. = - 2 J (P1a"- 2a1) • 
I. Vc 

Since, by hypothesis, the working substance uni­
formly fills the entire volume of the resonating 
cavity, it is convenient to make an expansion of 
P 1(r, t) and P2(r, t) in terms of the system of 
functions aA. and a~: 

P1 (r, t) = '5',a,, (r) PIA (t), P2 (r, t) =~a;, (r) P2A (t). 
I. /, (8) 

The completeness and orthogonality of the system 
aA. follows from the properties of the system A A..* 

Our set problem of finding the conditions of 
self-excitation of the generator presupposes an 
analysis of (7) for stability. Let us assume that 
at the initial time the quantities P 1A., P2A_, and qA. 
are close to 0 and sa = s~ does not depend on the 
space coordinates. t The replacement of sa by s~ 
in (7a) and (7b) linearizes these equations and al­
lows us to go from a system of an infinite number 
of coupled equations to a finite system. Multiply­
ing both sides of (7a) by a~ and both sides of (7b) 
by aA. and integrating them over the cavity volume 
Vc, we get 

PIA+ (T;-1 - iw0) ~). + s~qA = 0, (9a) 

P2), + (T;-1 + iw0) P21• + ~q" = 0. (9b) 

Integrating both sides of (7c) and the right side of 
(7d), we arrive at the equations 

Let us now assume that there is a small pertur­
bation of the form 

(10) 

where SA_= UA. + ioA.. Substitution of (10) in (9a)­
(9c) leads to a system of homogeneous algebraic 
equations, which has a non-trivial solution when 
the determinant is equal to zero: 

*We are confining ourselves to the case of greatest prac­
tical ill!-portance, for which A.V!At..l is a constant vector. 

t2s, has the meaniQg of the number of active molecules 
per unit volume, and s, > 0 describes a state with a prepon­
derance of molecules in the upper level. 

st- i£~. (w1../Q1.. + 2/T2)- £2 (w~. + w~ + T;-2 + 2wA/Q1,T2) 

+ i£1..wA [2w~.IT2 + (w~ + T22)/QA] + w~. (w~ + T22) 

+ na2WoS~ = 0. (11) 

Confining ourselves to the case I <'>A. I « flA. and 
neglecting terms in 6~, 6~, and 6~, we can write 
instead of Eq. (11) two real equations which deter­
mine UA. and oA. as functions of WA_, s~, and so on. 
We shall be interested in the occurrence of solu­
tions of the system (9) that increase with the time. 
From physical considerations it is clear that for 
s~ > s~cr there must be increasing solutions char­
acterized by oA. < 0. * The condition oA. < 0 leads 
to the following relations: 

so 
3 cr 

w~. [(w~- Q~. cr + r;-2)2-f- 4T;2Q~ crl 

2Q). r; 1wolia2 

(12) 

(13) 

The quantity s~ cr depends on WA_, and to a certain 
characteristic frequency of the cavity there corre­
sponds a value ( s~ cr >min below which there is no 
instability in the system. The quantity ( s~ cr >min 
can be determined from Eq. (13), and the corre­
sponding oscillation frequency is given approxi­
mately by n~ = w~ - T22• If we use the fact that 
T22 « w~, so that without much error we can set 
WA_ = flA_ = Wo, we get a simple formula for the 
boundary of the region of self-excitation: 

(s~ cr )min::::::: 2w~jna2Q1_T2. (14) 

The quantity a 2 that appears here is given by 

(15) 

The simplest special case is that in which AA. 
are plane waves and the vectors e 1 and e2 are col­
linear. Then the optimal mode, in the sense of its 
polarization, is that for which AA. II e 1, and by 
using the normalization conditions and Eq. (3) one 
verifies without difficulty that a 2 = (167rw~/ti2 >1~12 1 2 • 
From this we have 

(16) 

Comparing Eq. (16) with the condition for self­
excitation of an ordinary molecular generator ob­
tained by Basov and Prokhorov, [G] one readily 
verifies that they are identical. This fact is not 
unexpected, since the calculation of Basov and 
Prokhorov was made on the same assumptions 
about the character of the polarization of the field 
in the cavity and about the properties of the dipole 

*This can be shown directly, because d8jds~ < 0. 
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moment as -have been used in obtaining Eq. (16), 
and is due to the fact that the minimum point on 
the curve of s~ cr ( w;\) corresponds to the excita­
tion of only one mode of the cavity. For s~ 
> ( s~ cr >min adjacent modes also become unstable. 

In conclusion we remark that the treatment 
given here has been based essentially on the as­
sumption that the volumes of the matter and the 
field are the same. It is just owing to this that 
we could go from the system (7) to the system (9). 
If we take into account the finite conductivity of 
the walls of the cavity this assumption is incorrect, 
owing to the penetration of the field into the metal 
to the extent of the skin depth. In this case our 
derivation remains valid, though only approxi­
mately, provided a condition which will now be 
indicated is satisfied. 

Let A-11. be the eigenfunctions of a hypothetical 
cavity with ideally conducting walls and with the 
same geometry as the actual cavity. Then we 
have the equation 

~ ~AAA11 dV = ~ ~ A~.A11 dV + ~ ~A~.A11 dV, (17) 
Vc+Ysk 1'- Vc 1'- Vsk 1'-

in which V c is the volume of the cavity and V sk is 
the volume of the skin-depth layer. It follows from 
Eq. (17) that the system of functions AA. can be 
used if 

~ ~ A~.A11 dV:= ~ A~dV~ ~ ~A~.A11 dV. (18) 
Vel'- Vc Vsk 11 

Since 

~ ~ A~.A11 dV < ~ ~ {max A11 }2 dV = n {max A11 }2 Vsk• 
11 Vsk 11 Vsk 

we can replace Eq. (18) by the stronger inequality 

~ A~dV ~ n {max A~.} 2 Vsk· (19) 
Vc 

It is natural to take n to mean the total number of 
characteristic frequencies of the cavity that fall 
within the line width of the molecules. Violation 
of the inequality (19) is to be expected only in the 
case of large n, i.e., when the dimensions of the 

cavity are much larger than the wavelength. Fur­
thermore, according to the normalization condition, 
{max AA.}2""' 47rc2/Vc· Using the fact that the 
ratio V c /V sk is approximately equal to the qual­
ity figure (cf., e.g., C7J), we finally get the con­
dition for the validity of our approximation in the 
form 

(20) 

The criterion (20) is satisfied clear up to the op­
tical region. In fact, the number of types of vibra­
tions of a resonator such as a Fabry-Perot inter­
ferometer which have sufficiently high values of 
Q is given, according to [BJ, by the formula 

n =LD4oN'!..oo/'ht2c!'Q2 • 

Here Q = Lw/c ( 1- a), L is the distance between 
the plates and D their diameter, and a is the re­
flection coefficient. For L = 4 em, D = 0.5 em, 
w :::::: 3 x 1015, t::.w/w = 10-3, a= 0.95, we get 
n/Q:::::: 0.2. 
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