DECAY SCHEME FOR Br⁷⁵

K. A. BASKOVA, S. S. VASIL'EV, NO SENG CH'ANG, and L. Ya. SHAVTVALOV

Institute of Nuclear Physics, Moscow State University

Submitted to JETP editor June 26, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1484-1486 (November, 1961)

The β^+ and γ spectra of Br⁷⁵ with half-life of 100 ± 5 min are investigated. The β^+ spectrum consists of three components with end-point energies 1720, 1100, and 650 kev. Gamma transitions with energies 285 and 620 kev are observed. A study of $\beta^+\gamma$ coincidences indicates the existence of a temporal correlation between the β^+ transition (1720 kev) and γ transition (285 kev). A probable decay scheme is suggested for Br⁷⁵.

¹HE single-particle model of the nucleus describes well such quantum characteristics as the total angular momentum and the parity of the ground state of odd nuclei ^[1]. For certain nuclei, however, the values of the angular momentum do not agree with experiment. One such nucleus is $_{34}$ Se $_{41}^{75}$, with a ground-state total momentum of $\frac{5}{2}$.^[2] In addition, Se⁷⁵ has an anomalously large quadrupole moment. Nemirovskii ^[3] noted in his book that the deformation of the nuclear surface plays an appreciable role here.

The present investigation was devoted to a study of β^+ and γ radiation from Br⁷⁵, which decays to Se^{75} . In an investigation of the activities induced in enriched Se⁷⁵ bombarded by protons and deuterons in a cyclotron, Woodward, McCown, and Pool first succeeded in observing the radioactive isotope Br^{75} with a half life of 102 minutes. A magnetic-spectrometer investigation^[5] of the β^+ radiation from Br⁷⁵ disclosed the existence of four partial β^+ transitions with end-point energies 1700 ± 20, 800, 600, and 300 kev. The γ spectrum of Br⁷⁵ was investigated by Beydon et al.^[6] with the aid of a luminescent γ spectrometer, in which an investigation of the products of the reaction $Cu + C^{12}$ disclosed a 285-kev γ transition. The intensity of this γ transition decreased with a half life of 95 ± 5 minutes.

In the present investigation, the Br⁷⁵ was obtained by bombarding Se⁷⁴ (enriched to 40.9%) with deuterons in the 120-cm cyclotron of the Nuclear Physics Research Institute of the Moscow State University. The targets were exposed for about 3 hours. The β^+ spectrum of Br⁷⁵ was investigated in a thin-lens magnetic β spectrometer. An analysis of the Fermi plot of the resultant β^+ spectrum yielded two partial β^+ transitions with end-point energies 1720 ± 50, 1100, and 650 kev

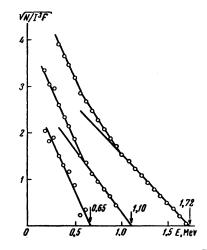


FIG. 1. Fermi plot of β^+ spectrum of Br⁷⁵.

(Fig. 1) and with respective intensities 80, 15 and 5%.

The γ spectrum was investigated with a luminescent γ spectrometer with a 100-channel analyzer. The resolution of the γ spectrometer was 8.7% for the Cs¹³⁷ 662-kev γ transition. The initial measurement of the γ spectrum of Br⁷⁵ disclosed the presence of a single γ transition with energy 285 kev. The β^+ spectrum, however, indicates that a 1720 - 1100 = 620 kev γ transition is possible on the skirt of the powerful annihilation peak. To observe the γ transition it was necessary to reduce the intensity of the annihilation peak. For this purpose we used a conical lead collimator^[7] and a thin source, so as to be able to neglect the annihilation in the source itself.

The γ spectrum thus obtained is shown in Fig. 2. We see in this spectrum a strong 285-kev γ and a weak 620-kev γ transition. The low-intensity γ radiation with energy E $\gamma > 700$ kev is due to long-lived activity of Br⁸² (T = 36 hours). The

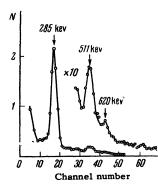


FIG. 2. γ spectrum of Br⁷⁵, measured with conical lead collimator.

half-life of the Br⁷⁵ is determined from the change in the intensity of the 285-kev γ line and the annihilation peak, and was found to be 100 ± 5 minutes. The 620-kev γ -line had the same half life.

The $\beta^+ \gamma$ coincidences were investigated with a magnetic-lens β spectrometer and with a luminescent spectrometer, connected for coincidence. The resolution time was determined periodically during the measurement of the true coincidences, and was found to be 0.25 μ sec. Figure 3 shows the Fermi plot of the β^+ spectrum, which is in correlation with the 285-kev γ quanta. It is seen from Fig. 3 that the points lie sufficiently close to a straight line. The end-point energy was found in this case to be 1700 ± 100 kev. The 285-kev transition thus follows the 1720-kev β^+ transition. This result contradicts the Br⁷⁵ decay scheme given by Dzhelepov and Peker,^[8] who assumed the 1720kev β^+ transition to go to the ground state of Se⁷⁵.

We have therefore drawn a probable decay scheme for Br^{75} (Fig. 4), in which the 1335-kev level expected from the 650 kev β^+ transition is shown dotted. From measurements of the 285-kev γ -transition intensity and of the annihilation peak we estimated the relative K-capture probability, compared with β^+ decay. This was found to be approximately 10%, which does not contradict the paper by Kuznetsova and Mekhedov^[9] where a value ~15% is cited. The total Br^{75} -Se⁷⁵ decay energy resulting from the proposed Br^{75} decay scheme is 3025 kev, which is closer to the 3236 kev calculated by the Cameron formula.^[10] The cause of the excited states of the nucleus is difficult to establish without data on the total angular

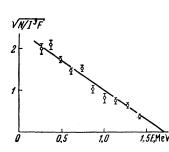


FIG. 3. Fermi plot of β^+ spectrum of Br⁷⁸, which correlates with the 285-kev quanta.

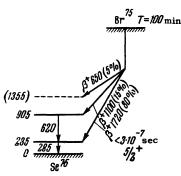


FIG. 4. Probable decay scheme of Br⁷⁵.

momenta. However, the observed excited levels are apparently not rotational.

The authors are grateful to Yu. A. Vorob'ev and V. S. Zazulin for help with the work.

¹M. Goeppert Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, Wiley, N. Y., 1955.

²L. C. Aamodt and P. C. Fletcher Phys. Rev. 98, 1224 (1955).

³ P. É. Nemirovskii, Sovremennye modeli atomnogo yadra (Modern Models of the Atomic Nucleus), Atomizdat, 1960.

⁴Woodward, McCown, and Pool. Phys. Rev. 74, 870 (1948).

⁵S. C. Fultz and M. L. Pool. Phys. Rev. **86**, 347 (1952).

⁶ Beydon, Chaminade, Dru, Farragi, Olkowsky, and Papineau. Nucl. Phys. **2**, 593 (1957).

⁷Konijn, van Nooijen, Mostert, and Endt. Physica **22**, 887 (1956).

⁸ B. S. Dzhelepov and A. K. Peker, Skhemy raspada radioaktivnykh yader (Decay Schemes of Radioactive Nuclei), An SSSR, 1958.

⁹ M. Kuznetsova and V. Mekhedov. Izv. AN SSSR, ser. fiz. **21**, 1020 (1957), Columbia Tech. Transl. p. 1021.

¹⁰ B. S. Dzhelepov and G. F. Dranitsina, Sistematika energii β -raspada (Systematics of β -Decay Energies), AN SSSR, 1960.

Translated by J. G. Adashko 252