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nium, the [111] axis of which was normal to the 
plane of the disc, while the normal itself made an 
angle e = 90° with the direction of the magnetic 
field. The measurements were made at room tem­
perature in a magnetic field of 24,500 oe. The 
e.m.f. was measured as usual in the direction 
perpendicular to the magnetic field direction and 
the direction of illumination. The curve 1b refers 
to the photomagnetic e.m.f. measured when the 
angle e ~ 130°. 

By analogy with the anisotropy of the even pho­
tomagnetic effect, [2] it was supposed that the 
measured odd photomagnetic e.m.f. can be re­
garded as the sum of isotropic and anisotropic 
components. It is clear that the purely anisotropic 
component can be obtained by measuring the odd 
photomagnetic e.m.f. in the direction of the mag­
netic field or its projection on the plane of the 
surface. Experiments performed in fact confirmed 
the presence of an odd photomagnetic e.m.f. when 
measuring it in the direction of the magnetic field, 
i.e., in the direction in which there is no isotropic 
odd photomagnetic effect. The variation of this 
photomagnetic e.m.f. on the angle cp is given in 
Fig. 1d (the continuous curve is the function E 
=a sin 6cp ). Figure 1c shows the anisotropy curve 
for the same specimen when e = 75° (the continu­
ous curve is the function E = a sin 3cp + b sin 6cp ) • 

Curves are given in Fig. 2 showing the varia­
tion of the extreme values of the odd photomag­
netic e.m.f. with the magnetic field strength. 
Curves 2a and 2b refer to the photomagnetic e.m.f. 
measured in the "usual" direction (perpendicular 
to the magnetic field) for two values of cp: 75° 45' 
and 22° 30' (see Fig. 1b). The specimen was ori­
ented relative to the magnetic field so that e 
~ 130°. For this value of e the anisotropic com­
ponent of the photomagnetic e.m.f. attains a maxi­
mum value. Curve 2c shows the variation of the 
extremal value of the purely anisotropic compo­
nent of the odd photomagnetic e.m.f. on the mag­
netic field strength when e ~ 130°. 

The curves presented show that the variation 
of the odd photomagnetic e.m.f. on the magnetic 
field is essentially nonlinear. To explain the ob­
served anisotropy of the odd photomagnetic ef­
fects in strong magnetic fields, it is apparently 
necessary to include terms of higher odd degree 
in the magnetic field in a general phenomenolog­
ical equation of the Kagan-Smorodinskii [a] type. 
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MEASUREMENT of the electrical conductivity 
of thin metal wires is usually used to determine 
electron mean free paths. [1] In the standard 
method for this, the results obtained for the de­
pendence of resistivity on wire diameter are com­
pared with the theoretical curve obtained by 
Dingle. [2] It must be remembered that Dingle's 
results were obtained on the assumption of an 
isotropic, quadratic dispersion law for the elec­
trons. As a result, the ratio p/poo (poo is the 
resistivity of an infinitely thick wire and p that 
of a wire of diameter d) is expressed as a func­
tion of d/A. only (A. is the electron mean free 
path). 

One of us (B. A.) has measured the dependence 
of the resistivity of tin single crystal wires on di­
ameter. The tin used in the experiments was first 
subjected to zone refinement. [3] The purity is 
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calculated as 99.99986% U>4.2oo = 1.5 x 10-5 ). The 
results obtained are shown in Fig. 1 in the form 
of the dependence of 6 = R4.dR293 (R4.2 is the 
electrical resistance of a wire at 4.2° K, and R29a 
the resistance of the same wire at 20° C ) on the 
reciprocal of the diameter. The lower curve re­
fers to wires with axis parallel to the principal 
crystal axis ( Sn11 ) , and the upper curve to wires 
with axis perpendicular to the principal axis ( Sn 1). 
In the latter case the wire axis coincides with the 
[110] direction. These orientations of the single 
crystals were determined with an accuracy of 
2-4°. Since 6 was measured with an accuracy 
not worse than 2-3%, while the error in deter­
mining 1/d increased with decreasing diameter, 
we can say that the slope of the straight lines in 
Fig. 1 were determined with an accuracy of 1-3%. 
The slope of the line for Sn 1 is approximately 
three times greater than for Sn11 , i.e., the differ­
ence in slopes lies definitely outside the experi­
mental errors. * 

It is only possible to take a theoretical discus­
sion of the electrical conductivity of single crystal 
wires to the end (starting from the assumption of 
an arbitrary dispersion law for the electrons ) for 
the case when the mean free path A. is appreciably 
greater than the wire diameter. If the axis of the 
cylindrical wire is perpendicular to the symmetry 
plane of the crystal, the mean electrical conduc­
tivity a (d) is of the form 

I = ,(:, (1Jlb)2 dS, 
'j' y' 1 - (1Jlb)2 

(1) 

where b is a unit vector in the direction of the axis 
of the wire, m is a unit vector normal to the Fermi 
surface, dS is an element of area on the Fermi 
surface, and the integration is over the whole sur­
face. We should note that in the derivation of this 
expression there are no additional restrictions 
other than those usually assumed to be fulfilled 
(for example, it was assumed that the temperature 
is considerably below the Fermi energy). In par­
ticular, (1) is also valid for the model of a Fermi 
liquid. If we introduce the Gaussian curvature of 
the Fermi surface K ( e, cp) and choose the direc­
tion of the vector b as the polar axis, then (1) can 
be written in the following form: 

a (d)~ 3n8(~~1i)s ~ co:(~~~f!Jl. (2) 

The integrals in (1) and (2) cannot, naturally, be 
evaluated without an assumption about the disper­
sion law for the electrons. For a quadratic, aniso-
tropic dispersion law 
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(3) 

and taking the vector b to be parallel to the first 
axis, we obtain 

(4) 

where n is the number of electrons per unit vol­
ume, 

k2 = ml' 
~ 

1t/2 

F (k2, k3) = \ ___ .:::..dcp~-__,.,-
l (k2 cos2 cp + k3 sin2 cp)'/, 
0 

(5) 

For the isotropic case ( k2 = ka = 1 ) we obtain 
the well known Dingle formula: [2] 

a (d)~ (4de2 I 31i) (3n I 8n)'1• = aoo d /"A. 

If m 2 =rna= m1, while m 1 = m11, then 

a (d)= a (d) II = 4::
2 G~ )"'(:~ r·. (6) 

If m 1 = m 2 = m1, while rna= m11 (k2 = 1, k3 = k 
= m 1 /m11 ), then 

a(d)=:a(dl.L=~~~(:~f'(::)'''!F(I,k)+F(k, I)J. (7) 

From (6) and (7) we obtain 

j 1 1 

<l.L(d) _ __!_ ~ nk 1nT• 
(d) -nk [F(l,k)+F(k, 1)1~ 1 1. 

<l U Ink 

nk'/, ' 

(8) 

The dependence of a1(d)/a11 (d) on the ratio of 
dffective masses [ Eq. (8)] is shown graphically 
in Fig. 2. 

From the slope of the curves of Fig. 1 and the 
values P11 29a = 14.3 x 10-6 ohm em and P12sa = 9.85 
x 10-6 ohm em, [oi] we determined the products 
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[di\p(d)Jn =d[pu (d)-p 11 (oo)J =0,61·10-uQ. cm2, 

[di\p(d))j_ = 1.22·10-11Q·cm2. 

Using this data we can determine the values of 
the integrals entering into (1) for the two crystallo­
graphic directions: 

I u = 1,335·10-48/[di\p(d)J 11 =2.2·10-37 cgs esu 

I j_ = 1.335 ·10-48/[di\p (d) )j_ = I. I. w-;;- cgs esu (9) 

The difference in the slopes of the curves of 
Fig. 1 are thus connected with different values of 
the surface integrals [ Eq. (1)] in different crys­
tallographic directions, i.e., with the shape of the 
Fermi surface for tin. From this point of view, 
an experimental study of the difference in the 
slopes of the straight lines (in o, 1/d coordi­
nates) for Pb, Cu, Au, Ag and possibly AI in 
the [100] and [111] directions is of interest; these 
are the directions in which maximum differences 
of conductivity of thin wires of cubic crystals are 
expected (the existence of complicated open Fermi 
surfaces are assumed for these metals, except 
AI [5J). 

If the crystal anisotropy is described in terms 
of effective masses, then for tin, for which 
~ll(d)/~l(d) = 0.5 (at 4.2°K) we must take 
m 1/m11 = 1.85 from Fig. 2 and n = 4.4 x 1022 
[ calculated according to (6)]. 

Since the number of atoms per unit volume 
nA = 3. 7 x 1022 em - 3 for tin, there must be n/nA 
= 1.2 conduction electrons per atom. Naturally, 
this number cannot be considered the true number 
of conduction electrons per atom as it was ob­
tained from very simplifying assumptions about 

a quadratic dispersion law, while from galvano­
magnetic and magnetic experiments it is known 
that the Fermi surface for tin is very compli­
cated. [ 6] 

*A detailed discussion of the experimental method and 
results will be given separately. 
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