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Some information on A(.!:) + 11'- A(.!:) + y processes can be obtained by investigating the 
K + N- A(.!:)+ y reaction. A detailed phenomenological analysis of these processes in the 
s state is performed. The Kroll-Ruderman theorem for photoproduction of pions on hyperons 
near threshold is considered. 

l. One of the most important problems in elemen
tary-particle physics is the study of interactions 
between unstable particles, where for lack of an 
unstable-particle target it becomes necessary to 
use indirect methods for this purpose. 

We have shown earlier [i] that by using the uni
tarity condition for the S matrix we can establish 
certain relations between the matrix elements for 
the processes K + N- K + N, K + N- A(.!:) + 11' 

and A ( ~) + 11'- A ( 1:) + 11' for states with arbitrary 
values ofthe angular momentum. It is therefore nec
essaryto obtain certain information on the processes 
A(.!:) + 11'- A(.!:) + 11' by analyzing the cross sec
tions and polarizations of the baryons in elastic 
scattering and in reactions involving K mesons 
and nucleons. Similar conclusions were reached 
later by other authors. [2•3] In [ 2] and [3] there 
is a detailed analysis of elastic scattering and in
teraction of K mesons with nucleons in the s 
state. Existing experimental data allow us to es
tablish the phase difference of the s waves in 71'1: 
scattering with isospin I = 1 and I = 0. 

In order to obtain certain information on the 
electromagnetic and strong interactions of hyper
ons, we consider in the present article the proc-
esses 

R + N ->A(.!:)+ y. {1) 

The S-matrix unitarity conditions cause the mat
rices for the processes 11' +A(.!:)- A(.!:) + y to be 
related with the matrix elements of processes (1). 

2. For simplicity we consider the reactions (1) 
in the s state only. We use the K-matrix method 
developed in [3J. For our problem it is convenient 
to use a symmetrical and Hermitian K matrix, 
expressed in terms of a T matrix with the aid of 
the relation 

K = T- inKpT = T- inTpK, {2) 

where p is the density matrix of the phase volume 
for the intermediate states with fixed total energy. 
For two-particle (binary) reactions with a defi
nite angular momentum, the matrix p is diagonal. 
In the relativistic normalization of the wave func
tions, the diagonal elements of the p matrix are 

Pnn = Mnk/nE, (3) 

where k is the relative momentum of the particle 
in the c.m.s., Mn is the mass of the baryons in the 
intermediate states, and E is the total energy of 
the system: 

E = (k2 -j- M~)'1• -!-- (k2 -!-- m2)'1•. (4) 

If we introduce the notation 

T' = np''•Tp''•, (5) 

then Eq. {2) can be rewritten as 

K' = T'- iK'T' = T'- iT'K'. {6) 

From {6) we obtain 

T' = (1 - il(')-1 K' = K' (1 - iK')-1 • {7) 

The cross section of reaction {1) expressed in 
terms of the T' matrix, in a state with definite 
angular momentum J and with definite parity, is 

Let us consider the submatrices of the intro
duced K and T matrices, which we denote by 

a= <KNIKIRN>. 
~ = <KN IKIYn), 
~+ = <Yn IK IKN>. 
r = <Yn I K.IYn), 

£ = <KN IK.\Yy), 
£+ = (YriK.\K.N), 
T) = (Y'Jt IK.IYr>. 

TJ+ =<YriK.IYn), 
~ = <Yr IK.I Yr>. 

Txx = (RN IT IKN), 
T.xy =(i(N IT I Yn), 
Tvx =<Yn! T I K.N), 
Tyy =(YniTIYn), 

Txy = (K.N IT I Yy), 

TyK. =<YriTIK.N), 
Tyy = <Yn IT I Yy), 
Tyv=(YriT\Yn), 
Tyy = <YriTIYy). 

{8) 

{9) 

932 



ON THE K + N- A(l::) + y PROCESS 933 

We denote the submatrices of the K' and T' 
matrices by the corresponding primed letters. We 
neglect the matrix ?; , which is at least one order 
of magnitude smaller than the other matrices. 

If we introduce 

(10) 

then we can write 

( Ko 0) 
K = 6~ o . (11) 

From (5), (7), (10), and (11) we readily find that 

T~K = (1- iX')-1 X', 

T~v = (1 - iX't1 W (1 - ir')-1 

= (1 - iu't1 ~' (l -- iZ')-1, 

T~K = (1 - iZ't1 ~'T (l - iu't1 

,= (l - i)'')-1 ~'T (1 - iX't\ 

T~1 ,~ (1 - iZ')-1 Z', T~y 

= (1 - iX')-1 £' + i (1 - iX't1 ~' (1 - ir')-1rj', 

T~y = i (1- iZ')-1 ~'T (l - ia't1 £' + (1 - iZ')-1 11', 

T~K = e (l - iX't1 + i1']'T (l - ir't1 ~'T (l - iX't1, 

T~v = i£'T (l - iu't1 ~' ( 1- iZ')-1 + 11'T (1- iZ't\ 

where 
X' =a' + W (1 - ir't1 ~'T, 

Z' = r' + i~'T (1 - iu')-1 pt. 

(12) 

(13) 

3. In our discussion it is sufficient to take into 
account the electromagnetic interaction in first
order perturbation theory, considering separately 
the contributions from the iso-scalar and iso
vector parts of the electromagnetic interaction. 

We start from the iso-scalar current. In this 
case the total isospin is I= 0 for the A + y sys
tem and I= 1 for the 2:: + y system. We denote 
by ~~. ~~, 17~, and ~ the matrix el~ments with 
iso-scalar current for the processes K + N- A(l::) 
+ y and A(l::) + 11'- A(l::) + y, respectively. In the 
case of the iso-vector current, the total isospin is 
I = 1 for the A + y system and I = 0 or 1 for the 
2:: + y system. The corresponding matrix ele-

. 1 1 '1 1 0 ments w1ll be denoted by ~A• ~2::, ~2::, 17A• 112:, 
'1 and 112:. 

Let us consider the channels with isospin I= 0. 
In this case the submatrices a, {3, and y are sim
ply numbers. Expressions (13) are then reduced to 

X =a + ill~2 p:r:/(l -ill pEr) =a + ib, (14) 

where 

a ~~a- n2~2rr1/ [ 1 + n2ph2J, 

b = Jt~2 PEl[ 1 -j- Jt2 ph2J > 0. (15) 

Substituting (14) in (12) we get 

T~K c= (1- iX't1 X' = llPK (a0 + ib0 ) ~~1 , 

T~K = n'1'p k' (b0)'h/1·r:. ~-;\ (16) 

where 

Formulas (16) for the processes K + N - K + N 
and K + N -2:: + 7f were obtained by many authors. [3] 

Let us write 

From (14)-(17) we readily find that 

T , '!, •;, [to . o •;, •;, (bo)'/, n.:>Jj "-1 
AYK =ltpyAPK <oAK +trlAEn PE e Llo, 

T ' '!, 1/, [tO . · o •;, 1/, (bo)'f• o . .,.. ] "-1 E'(K = np'(EPK <oEK -t- t1']r:.r:.ll P:>J e ~ Llo . (18) 

We note that TAyK• T~yK• and T~ have al
most the same energy dependence in the low-energy 
region, where (assuming the relative parity of the 
hyperons to be positive) the energy dependence of 
PI::• PA• PyA• and Pyl:: can be neglected. 

Let us proceed to examine the channels with 
isospin I= 1. In this case y and {3 are matrices, 

( lAA lEA) r '= , ~ = (~AK• ~EK)· 
lA_J.: lEE 

(19) 

It is easy to verify that in this case X is simply a 
complex number 

(20) 

where 

1 A. '/ 1 ' '!,p,T 
a = a - rtpPy' 1 + r'2 r py P ' 

b1 _ ;tAp'/, _1_ p'l,p_T 
- P Y 1 + r'2 yP 

(21) 

From (12), (13), and (19)-(21) it follows that 

where 

n'Vf<b'/:.Kit.."-K = <A I (1 - ir')- 1~'T I K>, 
;t'1•P'J<b~'K.e'"r:.K == <2:: 1 (1 - ir't 1~'TI K>. 

~ 1 = 1 - inpK (a1 + ib 1), (23) 

and the quantities b AK and bi:;K are related with 
b by the equation b AK + bi:;K = b. If we represent 
the matrices ~ and 11 in the form 

( 'IJAA 'IJEA) 
S = (SAK• £r:.K), 1'] = ., ., • 

"IAl: "ll:l: 
(24) 



934 L. I. LAPIDUS and CHOU KUANG-CHAO 

then the matrix elements TyAK and Ty1:K become 

(25) 

(26) 

To simplify matters we introduce new symbols 

a 0 - n'1•o'1• [!: 0 + ir~0 :rt':•p'1• (b0)'/,ei1·;:.] 
A- I YA 'oAK "IA:E" ~ ' 
Q lf lj 0 • Q If 11 ( O lj i), 

r:J..;:. = 'Jt 'p.,~ ~~EK + lt'J;:.;:.'Jt''p~' b) 'e EJ, 

:t.' = n'/•p';, [r:l -L ir~l n'-'•p'f, (bl )'f,/i.AK 
·A J yA 'oAK I 'IAh. A AK 

_J_ ir~l n'l•p';, (bl ·)';,en·EKJ 
I 'IAE' E EK • 

X~ = n'1•p'.~, [!:1 + ir~1 n'1•p'/, (b1 )'1•ii.to..K 
~ yE 'o;:.K 'lEA A AK 

+ ifj~E n'1•p~' (b~K )'1•i)·EK j, 

:x '1 - n'/,p't, [ r:'l ' ir~'l n'.'•p'/, (bl )'!,iA.AK 
E - yE 'or;K T ''Eh. A AK 

+ iTJ~;:.n'Vi• (b~K)'1•ii.r:.K], (27) 

with which the cross sections of the processes (1) 
can be written in the following form: 

Process: 
K- + p ....... A0 +r 1 
K0 + n _, N +r f 
K- + P ~ 1:0 + r 1 
R_o + n ~ 1:o + y f 
K- + n -> 1:- + y} 
l(o + p ~-..1:+ + r 

Cross section: 

Thus, the experimental investigation of the 
processes K + N- A(1:) + y in Kp and Kd col
lisions can yield certain information on the matrix 
elements a A and a1:. Naturally, this information 
is not sufficient to reconstitute the matrix elements 
~ and 1], which describe the photoproduction of 
mesons on hyperons. Nonetheless they may prove 
useful for a study of the interaction between hy
perons and mesons or photons. 

4. A powerful method for the analysis of strong 
interactions is the method of dispersion relations 
(d.r. ), the use of which yields in many cases inter
esting results in the low-energy region. It can be 
assumed that the d.r. method is applicable to the 

photoproduction of mesons and hyperons. In the 
present paper we confine ourselves to a generali
zation of the Kroll-Ruderman theorem for photo
production of pions near threshold. [4] 

Let us assume that the A and 1: hyperons have 
a positive relative parity and that the K meson is 
pseudoscalar. If the created particles have low 
energies account of the electric dipole radiation 
is sufficient. The generalized Kroll-Ruderman 
theorem states that, accurate to m7r /M ~ 15%, 
the matrix for the electric dipole transition is de
termined completely by the pion -hyperon coupling 
constant. 

Let us write the Hamiltonian of the pion-hy
peron interaction in the form 

:Je = igEA '4o:. Ys4A 4, + ig;:.;:. ([~;:. Ys4;:.l t.fi,) + Herm. conj. 
(28) 

Following Low's method[5J we can obtain 

fJ~;:. ~ m,., I M, TJt\. ~ m,., I M, TJb ~ m~ I M, 

TJiA = TJlo:.o= V2a'.''f;:.A. [I+ 0 (m,.,/ M)l, 

TJi;:. = a'/•f-;:.;:. [I:+ 0 (m,., I M)], 11h ~ m, I i\11. 

Here m7r is the pion mass, M is the hyperon mass, 
a= E2/47r = Y137, and f2 = g2/81rM. 
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