ON THE $\overline{\mathbf{K}} + \mathbf{N} \rightarrow \Lambda(\Sigma) + \gamma$ PROCESS

L. I. LAPIDUS and CHOU KUANG-CHAO

Joint Institute for Nuclear Research

Submitted to JETP editor May 18, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1310-1314 (October, 1961)

Some information on $\Lambda(\Sigma) + \pi \to \Lambda(\Sigma) + \gamma$ processes can be obtained by investigating the $\overline{K} + N \to \Lambda(\Sigma) + \gamma$ reaction. A detailed phenomenological analysis of these processes in the s state is performed. The Kroll-Ruderman theorem for photoproduction of pions on hyperons near threshold is considered.

1. One of the most important problems in elementary-particle physics is the study of interactions between unstable particles, where for lack of an unstable-particle target it becomes necessary to use indirect methods for this purpose.

We have shown earlier^[1] that by using the unitarity condition for the S matrix we can establish certain relations between the matrix elements for the processes $\overline{K} + N \rightarrow \overline{K} + N$, $\overline{K} + N \rightarrow \Lambda(\Sigma) + \pi$ and $\Lambda(\Sigma) + \pi \rightarrow \Lambda(\Sigma) + \pi$ for states with arbitrary values of the angular momentum. It is therefore necessary to obtain certain information on the processes $\Lambda(\Sigma) + \pi \rightarrow \Lambda(\Sigma) + \pi$ by analyzing the cross sections and polarizations of the baryons in elastic scattering and in reactions involving K mesons and nucleons. Similar conclusions were reached later by other authors. [2,3] In [2] and [3] there is a detailed analysis of elastic scattering and interaction of K mesons with nucleons in the s state. Existing experimental data allow us to establish the phase difference of the s waves in $\pi\Sigma$ scattering with isospin I = 1 and I = 0.

In order to obtain certain information on the electromagnetic and strong interactions of hyperons, we consider in the present article the processes

$$\overline{K} + N \to \Lambda(\Sigma) + \gamma.$$
 (1)

The S-matrix unitarity conditions cause the matrices for the processes $\pi + \Lambda(\Sigma) \rightarrow \Lambda(\Sigma) + \gamma$ to be related with the matrix elements of processes (1).

2. For simplicity we consider the reactions (1) in the s state only. We use the K-matrix method developed in ^[3]. For our problem it is convenient to use a symmetrical and Hermitian K matrix, expressed in terms of a T matrix with the aid of the relation

$$K = T - i\pi K \rho T = T - i\pi T \rho K, \qquad (2)$$

where ρ is the density matrix of the phase volume for the intermediate states with fixed total energy. For two-particle (binary) reactions with a definite angular momentum, the matrix ρ is diagonal. In the relativistic normalization of the wave functions, the diagonal elements of the ρ matrix are

$$\rho_{nn} = M_n k / \pi E, \qquad (3)$$

where k is the relative momentum of the particle in the c.m.s., M_n is the mass of the baryons in the intermediate states, and E is the total energy of the system:

$$E = (k^{2} + M_{n}^{2})^{1/2} + (k^{2} + m^{2})^{1/2}.$$
(4)

If we introduce the notation

$$K' = \pi \rho^{1/2} K \rho^{1/2}, \qquad T' = \pi \rho^{1/2} T \rho^{1/2},$$
 (5)

then Eq. (2) can be rewritten as

$$K' = T' - iK'T' = T' - iT'K'.$$
 (6)

From (6) we obtain

932

$$T' = (1 - iK')^{-1} K' = K' (1 - iK')^{-1}.$$
 (7)

The cross section of reaction (1) expressed in terms of the T' matrix, in a state with definite angular momentum J and with definite parity, is

$$\sigma (i \rightarrow j) = 4\pi k_i^{-2} (J + 1/2) |\langle j | T' | i \rangle|^2.$$
(8)

Let us consider the submatrices of the introduced K and T matrices, which we denote by

$\alpha = \langle \overline{K}N K \overline{K}N \rangle,$	$T_{KK} = \langle \overline{K}N T \overline{K}N \rangle,$	
$eta = \langle \overline{K}N K Y\pi angle,$	$T_{KY} = \langle \overline{KN} T Y\pi \rangle,$	
$eta^+ = \langle Y\pi K \overline{K} N angle,$	$T_{YK} = \langle Y\pi \mid T \mid \overline{K}N \rangle,$	
$\gamma = \langle Y\pi K Y\pi \rangle,$	$T_{YY} = \langle Y\pi T Y\pi \rangle,$	
$\xi = \langle \overline{K}N K Y \gamma angle$,	$T_{K\gamma} = \langle \overline{K}N T Y\gamma \rangle,$	
$\xi^{\scriptscriptstyle +} = \langle Y \gamma K \overline{K} N angle$,	$T_{\gamma K} = \langle Y \gamma T \overline{K} N \rangle$,	
$\eta = \langle Y\pi K Y\gamma angle$,	$T_{Y\gamma} = \langle Y\pi \mid T \mid Y\gamma \rangle$,	
$\eta^{+}=\langle Y\gamma K Y\pi angle$,	$T_{\gamma Y} = \langle Y \gamma T Y \pi \rangle,$	
$\zeta = \langle Y \gamma K Y \gamma \rangle,$	$T_{\gamma\gamma} = \langle Y\gamma T Y\gamma angle.$	(9)

We denote the submatrices of the K' and T' matrices by the corresponding primed letters. We neglect the matrix ζ , which is at least one order of magnitude smaller than the other matrices.

If we introduce

$$K_0 = \begin{pmatrix} \alpha & \beta \\ \beta^* & \gamma \end{pmatrix}, \quad \delta = \begin{pmatrix} \xi \\ \eta \end{pmatrix},$$
 (10)

then we can write

$$K = \begin{pmatrix} K_0 & \delta \\ \delta^+ & 0 \end{pmatrix}.$$
 (11)

From (5), (7), (10), and (11) we readily find that

$$T'_{KK} = (1 - iX')^{-1} X',$$

$$T'_{KY} = (1 - iX')^{-1} \beta' (1 - i\gamma')^{-1}$$

$$= (1 - i\alpha')^{-1} \beta' (1 - iZ')^{-1},$$

$$T'_{YK} = (1 - iZ')^{-1} \beta'^{T} (1 - i\alpha')^{-1}$$

$$= (1 - i\gamma')^{-1} \beta'^{T} (1 - iX')^{-1},$$

$$T'_{YY} = (1 - iZ')^{-1} Z', T'_{KY}$$

$$= (1 - iZ')^{-1} \xi' + i (1 - iX')^{-1} \beta' (1 - i\gamma')^{-1}\eta',$$

$$T'_{YY} = i (1 - iZ')^{-1} \beta'^{T} (1 - i\alpha')^{-1} \xi' + (1 - iZ')^{-1}\eta',$$

$$T'_{YK} = \xi'^{T} (1 - iX')^{-1} + i\eta'^{T} (1 - i\gamma')^{-1}\beta'^{T} (1 - iX')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1} + \eta'^{T} (1 - iZ')^{-1},$$

$$T'_{YY} = i\xi'^{T} (1 - i\alpha')^{-1}\beta' (1 - iZ')^{-1} + \eta'^{T} (1 - iZ')^{-1},$$

where

$$X' = \alpha' + i\beta' (1 - i\gamma')^{-1} \beta'^{T},$$

$$Z' = \gamma' + i\beta'^{T} (1 - i\alpha')^{-1} \beta'.$$
(13)

3. In our discussion it is sufficient to take into account the electromagnetic interaction in firstorder perturbation theory, considering separately the contributions from the iso-scalar and isovector parts of the electromagnetic interaction.

We start from the iso-scalar current. In this case the total isospin is I = 0 for the $\Lambda + \gamma$ system and I = 1 for the $\Sigma + \gamma$ system. We denote by ξ_{Λ}^{0} , ξ_{Σ}^{1} , η_{Λ}^{0} , and η_{Σ}^{1} the matrix elements with iso-scalar current for the processes $\overline{K} + N \rightarrow \Lambda(\Sigma)$ $+ \gamma$ and $\Lambda(\Sigma) + \pi \rightarrow \Lambda(\Sigma) + \gamma$, respectively. In the case of the iso-vector current, the total isospin is I = 1 for the $\Lambda + \gamma$ system and I = 0 or 1 for the $\Sigma + \gamma$ system. The corresponding matrix elements will be denoted by ξ_{Λ}^{1} , ξ_{Σ}^{1} , $\xi_{\Sigma}^{\prime 1}$, η_{Λ}^{0} , η_{Σ}^{0} , and $\eta_{\Sigma}^{\prime 1}$.

Let us consider the channels with isospin I = 0. In this case the submatrices α , β , and γ are simply numbers. Expressions (13) are then reduced to

$$X = \alpha + i\pi\beta^2 \rho_{\Sigma}/(1 - i\pi\rho_{\Sigma}\gamma) = a + ib, \qquad (14)$$

where

$$\begin{aligned} a &= \alpha - \pi^2 \beta^2 \gamma \rho_{\Sigma}^2 / [1 + \pi^2 \rho_{\Sigma}^2 \gamma^2], \\ b &= \pi \beta^2 \rho_{\Sigma} / [1 + \pi^2 \rho_{\Sigma}^2 \gamma^2] > 0. \end{aligned}$$
(15)

Substituting (14) in (12) we get

$$\Gamma'_{KK} = (1 - iX')^{-1} X' = \pi \rho_K (a^0 + ib^0) \Delta_0^{-1},$$

$$T'_{\Sigma K} = \pi^{1/2} \rho_K^{1/2} (b^0)^{1/2} e^{i\lambda_{\Sigma}} \Delta_0^{-1},$$
 (16)

where

 $\tan \lambda_{\Sigma} = \pi \rho_{\Sigma} \gamma, \qquad \Delta_0 = 1 - i \pi \rho_K (a^0 + i b^0).$

Formulas (16) for the processes $\overline{K} + N \rightarrow \overline{K} + N$ and $\overline{K} + N \rightarrow \Sigma + \pi$ were obtained by many authors.^[3] Let us write

$$\Gamma'_{\gamma K} = \xi^{T} (1 - iX')^{-1} + i\eta^{T} (1 - i\gamma')^{-1} \beta'^{T} (1 - iX')^{-1}$$
$$= \begin{pmatrix} T'_{\Delta \gamma K} \\ T'_{\Sigma \gamma K} \end{pmatrix}, \quad \eta^{T} = \begin{pmatrix} \eta^{0}_{\Delta \Sigma} \\ \eta^{0}_{\Sigma \Sigma} \end{pmatrix}, \quad \xi^{T} = \begin{pmatrix} \xi^{0}_{\Delta K} \\ \xi^{0}_{\Sigma K} \end{pmatrix}.$$
(17)

From (14)-(17) we readily find that

$$T_{\Lambda\gamma K}^{'} = \pi \rho_{\gamma \Delta}^{t_{2}'} \rho_{K}^{t_{2}'} \left[\xi_{0 \Lambda}^{0} + i \eta_{\Lambda \Sigma}^{0} \pi^{t_{2}'} \rho_{\Sigma}^{t_{2}'} (b^{0})^{t_{2}'} e^{i \lambda_{\Sigma}} \right] \Delta_{0}^{-1},$$

$$T_{\Sigma\gamma K}^{'} = \pi \rho_{\gamma \Sigma}^{t_{2}'} \rho_{K}^{t_{2}'} \left[\xi_{\Sigma K}^{0} + i \eta_{\Sigma \Sigma}^{0} \pi^{t_{2}'} \rho_{\Sigma}^{t_{2}'} (b^{0})^{t_{2}'} e^{i \lambda_{\Sigma}} \right] \Delta_{0}^{-1}.$$
(18)

We note that $T'_{\Lambda\gamma K}$, $T'_{\Sigma\gamma K}$, and $T'_{\Sigma K}$ have almost the same energy dependence in the low-energy region, where (assuming the relative parity of the hyperons to be positive) the energy dependence of ρ_{Σ} , ρ_{Λ} , $\rho_{\gamma\Lambda}$, and $\rho_{\gamma\Sigma}$ can be neglected.

Let us proceed to examine the channels with isospin I = 1. In this case γ and β are matrices,

$$\gamma = \begin{pmatrix} \gamma_{\Lambda\Lambda} & \gamma_{\Sigma\Lambda} \\ \gamma_{\Lambda\Sigma} & \gamma_{\Sigma\Sigma} \end{pmatrix}, \quad \beta = (\beta_{\Lambda K}, \ \beta_{\Sigma K}).$$
(19)

It is easy to verify that in this case X is simply a complex number

$$X = a^1 + ib^1$$
, (20)

where

$$a^{1} = \alpha - \pi \beta \rho_{Y}^{i_{2}} \frac{1}{1 + \gamma^{\prime 2}} \gamma^{\prime} \rho_{Y}^{i_{2}} \beta^{T}, \qquad b^{1} = \pi \beta \rho_{Y}^{i_{2}} \frac{1}{1 + \gamma^{\prime 2}} \rho_{Y}^{i_{2}} \beta^{T}$$
(21)

From (12), (13), and (19)-(21) it follows that

$$T'_{KK} = \pi \rho_K (a^1 + ib^1) \Delta_1^{-1}, \quad T'_{\Delta K} = \pi^{1/2} \rho_K^{1/2} (b^1_{\Delta K})^{1/2} e^{i\lambda_{\Delta K}} \Delta_1^{-1}, T'_{\Sigma K} = \pi^{1/2} \rho_K^{1/2} (b^1_{\Sigma K})^{1/2} e^{i\lambda_{\Sigma K}} \Delta_1^{-1},$$
(22)

where

$$\pi^{1/2} \rho_{K}^{1/2} b_{\Delta K}^{1/2} e^{i \Lambda_{\Delta K}} \equiv \langle \Lambda | (1 - i\gamma')^{-1} \beta^{'T} | K \rangle, \pi^{1/2} \rho_{K}^{1/2} b_{\Sigma K}^{1/2} e^{i \Lambda_{\Sigma K}} \equiv \langle \Sigma | (1 - i\gamma')^{-1} \beta^{'T} | K \rangle, \Delta_{1} = 1 - i \pi \rho_{K} (a^{1} + ib^{1}),$$

$$(23)$$

and the quantities $b_{\Lambda K}$ and $b_{\Sigma K}$ are related with b by the equation $b_{\Lambda K} + b_{\Sigma K} = b$. If we represent the matrices ξ and η in the form

$$\boldsymbol{\xi} = (\xi_{\Lambda K}, \ \xi_{\Sigma K}), \quad \boldsymbol{\eta} = \begin{pmatrix} \eta_{\Lambda \Lambda} & \eta_{\Sigma \Lambda} \\ \eta_{\Lambda \Sigma} & \eta_{\Sigma \Sigma} \end{pmatrix}, \quad (24)$$

then the matrix elements $T'_{\gamma\Lambda K}$ and $T'_{\gamma\Sigma K}$ become

$$T'_{\gamma\Lambda K} = \pi \rho_{\gamma\Lambda}^{1/2} \rho_K^{1/2} \Delta_1^{-1} [\xi_{\Lambda K} + i\eta_{\Lambda\Lambda} \pi^{1/2} \rho_\Lambda^{1/2} b_{\Lambda K}^{1/2} e^{i\lambda_{\Lambda K}} + i\eta_{\Lambda\Sigma} \pi^{1/2} \rho_{\Sigma}^{1/2} b_{\Sigma K}^{1/2} e^{i\lambda_{\Sigma K}}], \qquad (25)$$

$$T'_{\gamma\Sigma K} = \pi \rho_{\gamma\Sigma}^{1/2} \rho_{K}^{1/2} \Delta_{1}^{-1} [\xi_{\Sigma K} + i \eta_{\Sigma \Lambda} \pi^{1/2} \rho_{\Lambda}^{1/2} b_{\Lambda K}^{1/2} e^{i \Lambda \Lambda K} + i \eta_{\Sigma\Sigma} \pi^{1/2} \rho_{\Sigma}^{1/2} b_{\Sigma K}^{1/2} e^{i \Lambda \Sigma K}].$$
(26)

To simplify matters we introduce new symbols

$$\begin{aligned} \alpha_{\Delta}^{0} &= \pi^{1/2} \rho_{\gamma\Delta}^{1/2} [\xi_{\Delta K}^{0} + i\eta_{\Delta\Sigma}^{0} \pi^{1/2} \rho_{\Sigma}^{1/2} (b^{0})^{1/2} e^{i\Lambda_{\Sigma}}], \\ \alpha_{\Sigma}^{0} &= \pi^{1/2} \rho_{\gamma\Sigma}^{1/2} [\xi_{\Sigma K}^{0} + i\eta_{\Sigma\Sigma}^{0} \pi^{1/2} \rho_{\Sigma}^{1/2} (b^{0})^{1/2} e^{i\Lambda_{\Sigma}}], \\ \alpha_{\lambda}^{1} &= \pi^{1/2} \rho_{\gamma\Delta}^{1/2} [\xi_{\Delta K}^{1} + i\eta_{\Delta\Lambda}^{1} \pi^{1/2} \rho_{\Delta}^{1/2} (b_{\Delta K}^{1})^{1/2} e^{i\Lambda_{\Delta K}} \\ &+ i\eta_{\Delta\Sigma}^{1} \pi^{1/2} \rho_{\Sigma}^{1/2} (b_{\Sigma K}^{1})^{1/2} e^{i\lambda_{\Sigma K}}], \\ \alpha_{\Sigma}^{1} &= \pi^{1/2} \rho_{\gamma\Sigma}^{1/2} [\xi_{\Sigma K}^{1} + i\eta_{\Sigma\Lambda}^{1} \pi^{1/2} \rho_{\Lambda}^{1/2} (b_{\Delta K}^{1})^{1/2} e^{i\Lambda_{\Delta K}} \\ &+ i\eta_{\Sigma\Sigma}^{1} \pi^{1/2} \rho_{\Sigma}^{1/2} (b_{\Sigma K}^{1})^{1/2} e^{i\lambda_{\Sigma K}}], \\ \alpha_{\Sigma}^{1} &= \pi^{1/2} \rho_{\gamma\Sigma}^{1/2} [\xi_{\Sigma K}^{1} + i\eta_{\Sigma\Lambda}^{1} \pi^{1/2} \rho_{\Lambda}^{1/2} (b_{\Lambda K}^{1})^{1/2} e^{i\lambda_{\Lambda K}} \\ &+ i\eta_{\Sigma\Sigma}^{1/2} \pi^{1/2} \rho_{\Sigma}^{1/2} (b_{\Sigma K}^{1})^{1/2} e^{i\lambda_{\Sigma K}}], \end{aligned}$$

$$(27)$$

with which the cross sections of the processes (1) can be written in the following form:

$$\begin{array}{ll} \text{Process:} & \text{Cross section:} \\ \hline K^{-} + p \rightarrow \Lambda^{0} + \gamma \\ \hline \overline{K}^{0} + n \rightarrow \Lambda^{0} + \gamma \end{array} \right) & \frac{2\pi m_{K}}{E_{K}k} \left| \frac{\alpha_{\Lambda}^{0}}{\Delta_{0}} \pm \frac{\alpha_{\Lambda}^{1}}{\Delta_{1}} \right|^{2}, \\ \hline K^{-} + p \rightarrow \Sigma^{0} + \gamma \\ \hline \overline{K}^{0} + n \rightarrow \Sigma^{0} + \gamma \end{array} \right) & \frac{2\pi m_{K}}{E_{K}k} \left| -\frac{\alpha_{\Sigma}^{0} / \sqrt{3}}{\Delta_{0}} \pm \frac{\alpha_{\Sigma}^{1}}{\Delta_{1}} \right|^{2}, \\ \hline K^{-} + n \rightarrow \Sigma^{-} + \gamma \\ \hline \overline{K}^{0} + p \rightarrow \Sigma^{+} + \gamma \end{array} \right) & \frac{2\pi m_{K}}{E_{K}k} \left| \frac{\alpha_{\Sigma}^{1} \pm \alpha_{\Sigma}^{'} / \sqrt{2}}{\Delta_{1}} \right|^{2}. \end{array}$$

Thus, the experimental investigation of the processes $\overline{K} + N \rightarrow \Lambda(\Sigma) + \gamma$ in $\overline{K}p$ and $\overline{K}d$ collisions can yield certain information on the matrix elements α_{Λ} and α_{Σ} . Naturally, this information is not sufficient to reconstitute the matrix elements ξ and η , which describe the photoproduction of mesons on hyperons. Nonetheless they may prove useful for a study of the interaction between hyperons and mesons or photons.

4. A powerful method for the analysis of strong interactions is the method of dispersion relations (d.r.), the use of which yields in many cases interesting results in the low-energy region. It can be assumed that the d.r. method is applicable to the

photoproduction of mesons and hyperons. In the present paper we confine ourselves to a generalization of the Kroll-Ruderman theorem for photoproduction of pions near threshold.^[4]

Let us assume that the Λ and Σ hyperons have a positive relative parity and that the K meson is pseudoscalar. If the created particles have low energies account of the electric dipole radiation is sufficient. The generalized Kroll-Ruderman theorem states that, accurate to $m_{\pi}/M \approx 15\%$, the matrix for the electric dipole transition is determined completely by the pion-hyperon coupling constant.

Let us write the Hamiltonian of the pion-hyperon interaction in the form

$$\mathcal{H} = ig_{\Sigma\Lambda}\overline{\Psi}_{\Sigma}\gamma_{5}\Psi_{\Lambda}\Psi_{\pi} + ig_{\Sigma\Sigma}([\overline{\Psi}_{\Sigma}\gamma_{5}\Psi_{\Sigma}]\Psi_{\pi}) + \text{Herm. conj.}$$
(28)

Following Low's method^[5] we can obtain

$$\begin{split} \eta_{\Lambda\Sigma}^{0} &\sim m_{\pi} / M, \quad \eta_{\Sigma\Lambda}^{1} \sim m_{\pi} / M, \quad \eta_{\Sigma\Sigma}^{1} \sim m_{\pi} / M, \\ \eta_{\Sigma\Lambda}^{\prime 1} &= \eta_{\Lambda\Sigma}^{\prime 1} = \sqrt{2} \alpha^{3/2} f_{\Sigma\Lambda} \left[1 + O \left(m_{\pi} / M \right) \right], \\ \eta_{\Sigma\Sigma}^{\prime 1} &= \alpha^{3/2} f_{\Sigma\Sigma} \left[1 \right] + O \left(m_{\pi} / M \right) \right], \quad \eta_{\Sigma\Sigma}^{0} &\approx m_{\pi} / M. \end{split}$$

Here m_{π} is the pion mass, M is the hyperon mass, $\alpha = \epsilon^2/4\pi = \frac{1}{137}$, and $f^2 = g^2/8\pi M$.

¹L. I. Lapidus and Chou Kuang-chao, JETP **37**, 283 (1959), Soviet Phys. JETP **10**, 199 (1960).

² Jackson, Ravenhall, and Wyld, Nuovo cimento 9, 834 (1958). R. H. Dalitz and S. F. Tuan, Ann. of Physics 8, 100 (1959). M. Ross and G. Snow, Phys. Rev. 115, 1773 (1959).

³R. H. Dalitz and S. F. Tuan, Ann. of Physics **10**, 307 (1960). P. T. Mathews and A. Salam, Nuovo cimento **13**, 382 (1959). J. D. Jackson and H. Wyld, Nuovo cimento **13**, 84 (1959).

⁴K. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).

⁵ F. E. Low, Phys. Rev. **97**, 1392 (1955).

Translated by J. G. Adashko 224