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Photoproduction of a neutrino-antineutrino pair on an electron is considered. The cross 
section for this process is calculated, and the photoneutrino emission by a degenerate or 
nondegenerate electron gas at high temperature and density is determined in the nonrela­
tivistic approximation. The photoneutrino emission from an electron gas of density 105 

g/cm3 at temperatures KT =:: 40 kev (K is Boltzmann's constant) exceeds the neutrino 
bremstrahlung radiation under the same conditions [4] by two orders of magnitude. In 
stars with high temperature and density (such as novae between bursts, etc.) the energy 
radiated in the form of photoneutrinos exceeds the usual photon luminosity. 

1. INTRODUCTION 

AccORDING to the theory of Feynman and 
Gell-MannC1J there is a direct neutrino-electron 
scattering process v + e- v' + e' with a matrix 
element 

which is of first order in the weak interaction 
coupling constant. Direct experimental study of 
this process is extremely difficult at the present 
time; however, its existence can lead to macro­
scopic effects which are important in astrophysics. 
In 1941 Gamow and Schoenberg [2] showed that at 
the high temperatures and densities which exist in 
the interiors of stars in the last stages of evolu­
tion the process of nuclear electron capture and 
subsequent beta decay 

with the emission of two neutrinos, becomes pos­
sible. Although the cross section for this process 
is very small, the energy carried out of the star 
by neutrinos from this process can exceed the 
energy emitted in the form of photons. This is 
because neutrinos travel out freely from the star's 
interior, while photons have a very short free path 
and are therefore radiated only by the external 
envelope of the star. It should be noted, however, 
that process (2) has an energy threshold, and 
therefore stellar neutrino emission from this 
process depends on the presence of nuclei with a 
low threshold. 

Pontecorvo [3] pointed out that if the direct 
electron-neutrino interaction (1) occurs then neu­
trino pair bremstrahlung can occur in the scatter­
ing of an electron by a nucleus: 

(3) 

This process is unlike process (2) in that it does 
not have a threshold; in stars with high tempera­
tures and densities and also high Z it can be an 
important energy radiation mechanism. [3] Gandel'­
man and Pinaev C4J showed that in stars with Z 
about 10, temperature KT 2: 30 kev, and density 
p > 105 g/cm3, the energy carried off by neutrinos 
formed in process (3) exceeds the energy radiated 
in the form of photons. 

We wish to point out that the existence of a 
direct electron-neutrino interaction also leads 
to the photoproduction of neutrino pairs on elec­
trons: 

r + e-+e' + v + v. (4) 

This process is first order in the weak interaction 
and electromagnetic coupling constants. Since the 
photon number density increases very rapidly with 
temperature and can be comparable with and even 
exceed the density of electrons and nuclei at high 
temperatures, process (4), like process (3), can be 
an important energy radiation mechanism in stars 
with high temperature and density. 

In this work we calculate the neutrino pair pho­
toproduction cross section on electrons and the 
photoneutrino radiation by a degenerate or nonde­
generate electron gas as a function of temperature 
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and density. We show that the photoneutrino radia­
tion by an electron gas is two orders of magnitude 
greater than the neutrino bremstrahlung radiation 
under the same conditions. This is mainly due to 
the fact that the neutrino pair photoproduction cross 
section increases rapidly with photon energy and the 
neutrino bremstrahlung cross section increases 
with increasing energy, while the photon spectrum 
is shifted to higher energies as compared to the 
electron spectrum at the same temperature. 

2. CROSS SECTION FOR NEUTRINO PAIR PHOTO­
PRODUCTION OF ELECTRONS 

We let p = ( p, E) and p' = ( p', E') be the initial 
and final electron four-momenta and k = (k, w ), 
q1 = ( q1, E 1), and q2 = ( q2, E 2) be the four-momenta 
of the photon, neutrino, and antineutrino. The for­
mation of a neutrino-antineutrino pair in the colli­
sion of a photon and an electron is described by 
the two Feynman diagrams shown in Fig. 1. The 
matrix element for this process is 

eG- A A-

M~' ,r::{(vnr (1 +Ys)(ip1 +m)-1ee)(e'y,(l +Yo)v.) 
2r Ol iJ. r 

+ (fi'e UP2 + mt1 Y1, (1 + Ys) v.) (vnyfL (1 + Ys) e)}, (5) 

where e11 is the photon polarization four vector 
and 

PI = p + k, P2 = p'- k, Pt = p' + q1 + q2, 

P; = P + k. 

For calculation, it is convenient to use a Fierz 
transformation to obtain M in the form ( e'Oe) 
( iiOv ) . Then 

eG - A A 

M = ---:;;--= (e' [y (1 + y 5) (ip1 + m)-1 e 
2 f Ol I'· 

+ e (ip2 + mt1 Yp (1 + Ys)l e) 

x(vnyfL(l +Ys)v.). 

We then obtain for the differential cross section 
averaged over initial electron spin direction and 
photon polarization and summed over final elec­
tron spin directions 

where F is the invariant amplitude, M 
= (wEE' E1E2 ) - 112 F and 

(6) 

(7) 

- ( 4e2G2) -1 ~I F 12 = {m2 (p' qi) (p1q2) 

+ (pk) (p'q1) (kq2)l (pkt2 + [(pp') [(p~qJ) (pq2) 

+ (p' qi) (p1q2l I - (kp) (p' q1) (p + p'. q2) + (kp') 

X (p +p', q1) (pq2)1! (pk) (p'k) + [m2 (p2q1) (pq2) 

+ (p'k) (kq1) (pq2)1 (p'kt2. (8) 

Integrating over the neutrino and antineutrino 
momenta with the aid of the formula 

(' (aqJ (bq2) (14 (q- ql- q2) d"qi d"q• 
~ Bte2 

= ~ [2 (aq) (bq) + (ab) q2 ), 

we obtain 
e•G• { 2 2 2 [ m2 m• ' 2 {pp') J 

da = 12 (2n)• (pk) - q (q + m) (kp)2 + (kp')2 1 (kp) (kp') 

4 2 + 2 (q•- m•) (kq)"} d"p' (9) + q (kp) (kp') E' ' 

where q = q 1 + q 2 = p + k- p'. 
In the following we make the nonrelativistic ap­

proximation that w/m, I p 1/m, and I p' 1/m are all 
much less than one. Then the differential cross 
section (9) in the center-of-mass system is 

e2G2 {3w2 - p'2 w2 + p'2 1 }. 
da = (2n)• m•w --6--~ [kp')2 + 3 kp' dap'. 

(10)* 

In order to write the differential cross section (10) 
in the laboratory system, it is sufficient to make 
the replacements p' - p' - p - k, k - k, d~' 
-d3p'. 

We note that in general the number of final 
states of an electron with momentum p' is given 
by ( 1- np') d3p' I ( 27T ) 3, where np' is the occupa­
tion number of the state with momentum p'. Thus 
the differential cross section (10) has an additional 
factor ( 1- np') in the general case. In a medium 
with temperature T 

[ E' f..1 ) ]-I np· = exp ( x-:;. , + 1 , 

where J1. is the chemical potential; in the center of 
mass system np' must be replaced by np'+p+k in 
the nonrelativistic case. The integration over p' of 
the differential cross section (10) with the weight 
function 1-np'+p+k cannot be done analytically. 
Therefore we consider two extreme cases. 

1. Nondegenerate electrons. In this case np' 
« 1, and the total cross section for photoproduc­
tion of neutrino pairs on nondegenerate electrons 
obtained by integrating (9) over p' is 

r:tg• . 1i )2 1 {[ 8 10 2 5 
o = 12n• (me x (x + V x" + 1) 3 x4 + 3 x2 + 3 - L;X2 

+ ( ~x3 + 2x -~)Vx2 + 1 J ln (x + VX2+J) 

.- [~ 4 + ~ 2 _ 25 + (~ 3 + l_ _ ~) v~+ 1 ]} 9 X 18 X 6 9 X 2 X 4x X . 
(11) 

*[kp') = k X p'. 
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Here a= e2/47r = Y137 and g = m 2G = 3.0 x 10-12 

are dimensionless constants and x = w/m, where 
w is the photon energy in the center-of-mass sys­
tem. In the nonrelativistic approximation 

_ 4'1g2 ( 1i )z ( ro \4 __ -•s I ro )4 2 ( , cr(k,p)~35n•mc mc•)-1,13·10 \me• em. 11) 

2. Completely degenerate electrons. In this case 
np'+p+k = 1 if I p' + p + k I < Po and np'+p+k = 0 if 
I p' + P + k I > Po. where Po is the Fermi momentum. 
By using the properties of the dependence of the 
differential cross section on p' and the fact that 
I pI :::: p0, the nonrelativistic total cross section 
for photoproduction of neutrino pairs on degenerate 
electrons can be written in-the form 

(!,) 1 2rt 

a (k, p) = <2:;.a~•ro ~ p' 2 dp' ~ d cos e' ~ dq/ (12) 
p,-P P~-p'2_p, o 

2p'P 

{ 3ro• - p'• ro• + p'• 
X 6 - --r2(;)4 

X [kp')2 + +kp'} 6 (P +OJ- po), 

where P = p + k, e' is the angle between p' and 
P, cp' is the angle between the planes ( p', P) and 
(k, P ), and e (x) is one for x > 0 and zero for 
x < 0. The explicit expression for a (p, k) is 
cumbersome and therefore we do not give it here; 
in the following only the value of this integral at 
the point I PI =Po~ P =Po will be needed. 

3. PHOTONEUTRINO RADIATION POWER OF AN 
ELECTRON GAS 

The energy carried off by the neutrino pair in 
a single photoproduction event is E 1 + E2 = E + w 
- E'. Therefore the energy carried off by neutri­
nos from a unit volume of electron gas per unit 
time (the photoneutrino radiation power per unit 
volume of medium) is 

('\ 2cflk 2d"p (' ( ' 
Qv = jj (21t)3 (2n)3 ny (k) ne (p) V.rel j E + OJ - E ) 

X da (k, p, p'), (13) 

where ny(k) and ne(P) are the momentum distri­
butions of photons and electrons: 

1 1 
ny (k) = e"' xT- 1 ' ne (p) = iE-p.)/><T + 1 ' (14) 

and Vrel = 1-p • k/Ew is the relative velocity of 
the photon and electron. 

From energy and momentum conservation it 
follows that E- E' « w in the nonrelativistic case. 
Therefore the energy carried off by the neutrino 
pair in a single photoproduction is equal to the 
photon energy E 1 + E2 = w and the last integral 

in (13), which is usually called the effective de­
celeration, is simply 

~ (E +OJ - E') da (k, p, p') = wa (k, p). (15) 

We consider two cases in which Qv can be 
evaluated analytically. 

1. Nondegenerate electrons. In this case ne (p) 
= C exp (-E/KT) « 1 and a (k,p) is given by 
(11 '). After integrating, we obtain 

4·71(;(8) mc2 (xr)s Q., = -3, • ctg2mc• -,;- ----.. n,, 
;:m " me" 

(16) 

Substituting numerical values into (16) and assum­
ing that the medium is almost completely ionized, 
so that the electron density is related to the mat­
ter density p by ne = 6 x 1023 p/IJ.e, where 1181 

= ~i CiZi I Ai with Ci the weight concentration of 
element with atomic number Ai and charge Zi, 
we obtain (with T in kev ) 

Qv = 3.32·10-8T8 (p/f.te) erg/sec-cm3 (17) 

2. Strongly degenerate electrons. In this case 
P5/2m » KT and ne(P) = 1 if IP I< p0, ne(P) = 0 
if I pI > p0; Po is the Fermi momentum, which is 
related to the electron density by 

P/mc = (3ll2n.)'1• (nfmc) = 1.01· w-• ( P/r,)'1'; (18) 

a (p, k) is given by Eq. (12). We note that a (k, p) 
depends on k and p only through w, I p I, and P 

= lp+kl; namely, a(k,p) =a(w,p,P)x e(P+w-p0 ). 

Therefore the integration over the direction of p in 
(13) can be replaced by an integration over P be­
tween the limits I p- w I and p +w. We then obtain 

P-t-W \a (k, p) dQp = ~; {a (p -Po + 2w) ~ a (OJ, p, P) PdP 
Po-CiJ 

jp-wj 

-e (Jp-OJ\-Po +w) ~ cr (OJ,p,P)PdP}. 

Then integrating over I p I between zero and p0, 

we obtain 
Po Po+o> 

~a (k, p) d3p = :: { ~ pdp ~ cr (OJ, p, P) PdP + .. -}. 
Po-.2(1) Po-(J) 

(19) 
where the dots stand for terms proportional to 
e(2w-po) and e(w-po). Inthestronglydegen­
erate case Po » KT; in the integration over w 
these terms will therefore be exponentially small 
[of order exp (-p0 /2KT) and exp (-p0 /KT)] in 
comparison with the integral over w of the term 
written out in (19); hence, they will be neglected. 
Furthermore, since the main contribution of the 
first term in (19) to the integral over w comes 
from frequencies w near K T « p0, we can write 
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T,kev 
I erg/~ • cm3 1 erg/:::c • c:m3 

Degenerate gas { J 2.08·10-f 1.41·10-l 
4.06-102 1.17·103 
2.08·105 4,66·104 

20 1.06·108 1.20·106 

llS 
1.09-109 3.05·107 

1.08·1010 1~10·108 
50 6.50·1010 3.05·108 

70 9.55·1011 1.38·109 

100 1. 66·1013 6.87·109 

Nondegenerate gas 

Po P+o> Po+o> 

~ pdp ~ a(w,p,P)PdP~2wp0 ~ a(w,p0 ,P)PdP 
Po-2(1) Po-W P0-w 

~ (2wp0) 2 a (w, Po, Po)· (20) 

From Eq. (12) we obtain to lowest order in 
w/po 

a (w, Po• Po) = (2nt3 3~ (e2(]2/m2) w4 • 

Then, to lowest order in KT/p0, we obtain 

Q 12·8! ~ (9) 2 2 me2 (xT )9 me (21) 
v = 35 n4 ag me T me• ne p;; . 

Using (18) and substituting numerical values, we 
obtain 

the photon mean free path: 

i = bp-2T3' 5, 

fl-1 = ~ Ct(Z; + I)/ A;. 
i 

(24) 

The value of the constant C and the tempera­
ture and density distributions are different in the 
two models and must be found by numerical inte­
gration of the equilibrium equations. 

In the following we consider the point source 
model, since it corresponds more nearly to reality. 
The temperature and density distributions in this 
model were found by CowlingC6] by numerical in­
tegration of the equilibrium equations. Since the 
temperature falls rapidly, and the density even 
more rapidly, with distance from the star's cen­
ter, the central values of the temperature and 
density do not characterize the temperature and 
density of the main stellar mass. We therefore 
introduce the mean temperature T and mean 
density p defined by 

1 (" T = M :JpTdv, 
- 1 I 
p = v J pdv. (25) 

(22) By using the distributions p ( r) and T ( r), it 
can be shown [5•6] that the central temperature and 

The table lists the photoneutrino radiation power density are related to the mean temperature and 
Q11 per unit volume of electron gas (degenerate and density and also to the mass and radius of the star 
nondegenerate) in erg/sec-cm3 as a function of by 
temperature for a density p = 105 g/cm3• The cor­
responding values of the neutrino bremstrahlung 
radiation power q 11 found from the formula of 
Gandel'man and PinaevC4J are also shown. 

4. NEUTRINO RADIATION BY STARS 

If the distributions of temperature and density 
in a star are known, then Eqs. (17) and (22) enable 
us to find the energy emitted by the star in the 
form of neutrinos. It is advantageous to compare 
this energy L11 , which we will call the neutrino 
"luminosity" of the star, with the usual photon 
luminosity Ly. 

1. Nondegenerate star configurations. If the 
energy emission in the star occurs uniformly over 
the whole volume (uniform source model) or if 
all the star's energy is emitted at the center 
(point source model), then it follows from gen­
eral properties of the equation for equilibrium of 
the star that the liminosity Ly is related to the 
temperature Tc and density Pc at the star's 
center by [5] 

(23) 

where b is the constant in Kramer's formula for 

Pc = 37,0p = 8.84MW3 • (26) 

Here and in the following temperatures are in kev 
and densities in g/cm3• With the values found by 
Cowling for the constants, we obtain* 

Ly = 7.22. J035!l-o.s p;;-2.s bT~ = 1.19 . 1 oa4 !l-o.5 r;-2.s bfs. 

(27) 
We integrate Q11 over the volume of the star, 

using the distributions [6] p ( r) and T ( r) and Eq. 
(26), which relates R, Tc, and Pc· We obtain the 
resultt 
Lv = 1.45 .J025fl;l fl-1.5p;;-0,5 T~·5 

(28) 

*We note that in the corresponding equation [Eq. (16)] in 
the paper of Gandel'man and Pinaev, L•] the value of the con­
stant is too large by a factor of 5.1. This also affects their 
Eq. (19). 

tWe note that in Eq. (18) in the paper of Gandel 'man and 
Pinaev[•J the value of the constant in the expression for the 
neutrino bremstrahlung luminosity is two or three times too 
large due to the use of a rough approximation for the tempera­
ture and density instead of the numerical values given by 
Cowling. 
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The ratio of the photoneutrino and photon lumi­
nosities is 

L.l L'~ == 2.0 1·10-11 r~··p~/bf1ef1 = 0.69 .1Q-7f 1·5 p2/bf1.f1· 

(29) 

This ratio is of the order of unity for jj = 3 x 102 

and T = 10 kev, for example, which apparently pre­
vail in the stars like subdwarfs which flare up from 
time to time as novae. [7- 9] In stars which are 
evolving into white dwarfs, Tc :::o 40 kev, Pc :::o 5 
x 104 g/cm3 (see Opick[1oJ ); then Lv/Ly :::o 10. 

2. Degenerate star configurations. Since the 
thermal conductivity of a degenerate electron gas 
is very high (soft photons cannot be absorbed by 
the electrons ) , the temperature is constant in the 
interior of a star that consists of a degenerate 
gas. On the other hand, the equation of state of 
the degenerate gas depends weakly on the temper­
ature. If we neglect this dependence, the density 
distribution in the star depends on just one param­
eter, for example, the Fermi momentum at the 
center of the star xc = (p0/mc )c. In a nonrela­
tivistic electron gas x~ is small, and in this case 
the density distribution is determined by the Lane­
Emden polytrope with index %. namely, p ( r) 

= p f~~~ (3.654 r/R), where f3;2 (~) is the Lane­

Emden function with index % (see [11], Sec. 105, 
or [5], Ch. 11 ) . 

We integrate the photoneutrino radiation power 
of a degenerate electron gas over the stellar vol­
ume, using 

\ _ p 2/a 1 , 21 

\p'•dv=Mp-'1•3(_;....) I (..L)'x2 dx, 
• , p ~ Pc 

where the quantity 

3 ( Pi ) '!. ~ ( ~ t x2dx 
0 

depends weakly on the parameter x~, and is equal 
to 8.400 for small x~. Then 

Lv = 1,29 .lQ-7 Mf9/f1~3 p'lo, (30) 

On the other hand, Schatzman [12] showed that 
the photon luminosity of a degenerate star is re­
lated to its temperature and mass by T = 6.17 
x 107 ( Ly /M )217 (with T in degrees) or 

L'~ = 2.88 · w-a MT '1•, (31) 

if T is expressed in kev. Thus, the ratio of photo­
neutrino and photon luminosities is 

Lv/L'~ = 4.48·10-5 P·5ff1:f•p'i,, (32) 

This ratio is of the order of unity for p = 105 g/cma 
and T = 20 kev. In white dwarfs with p :::o 105 and 
T :=:o 5 kev, this gives Lv/Ly :::o 10-3• 

FIG. 2. Mean stellar temperatures and densities for which 
the photoneutrino and neutrino bremstrahlung luminosities are 
equal to the photon luminosity. 

The dependence of Lv /Ly on temperature and 
density is most conveniently discussed with the 
aid of a diagram. In Fig. 2 the line labelled TF 
separates the degenerate gas region (below TF) 
from the nondegenerate gas region (above TF). 
The lines Tp in both the degenerate and nonde­
generate regions correspond to the mean temper­
atures and densities for which the photoneutrino 
luminosity is equal to the usual photon luminosity; 
above these lines Lv /Ly > 1 and below them 
Lv /Ly < 1. Similarly, the lines TB correspond 
to the temperatures and densities for which the 
neutrino bremstrahlung luminosity is equal to 
the photon luminosity; The points below TB in the 
degenerate region correspond to temperatures 
and densities for which Lv /Ly > 1 (and vice 
versa ) . As is evident from Fig. 2, the region 
of stellar temperatures and densities for which 
the photoneutrino luminosity is greater than or 
equal to the photon luminosity is much larger than 
the region in which the neutrino bremstrahlung 
luminosity exceeds the photon luminosity, and in­
cludes the latter as a particular case. 

The most interesting region to us is that around 
p = 5 x 102 g/cm3 and T = 10 kev. These appear 
to be the densities and temperatures of novae be­
fore and after bursts [7- 9] (it is known that the 
same star can flare up as a nova several times 
and that its mass and luminosity are the same be­
fore and after a burst). Stars evolving into white 
dwarfs have even greater temperatures and den­
sities. [1o] Equation (29) and Fig. 2 show that the 
photoneutrino luminosity is near the photon lumi­
nosity or exceeds it in the region of densities 
greater than 5 x 102 and temperatures greater than 
5 kev; therefore neutrino photoproduction must 
play a significant role in the energy balance in 
such stars. 

What are the greatest stellar neutrino luminos­
ities? It is doubtful that the neutrino current in­
creases strongly during a nova burst, since the 
energy released during a nova burst is about 1045 
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erg, [7] which is 10-4 of the star's thermal energy. 
Therefore the mean stellar temperature and con­
sequently the neutrino luminosity are not signifi­
cantly increased during a nova burst. 

A different situation can be observed in a super­
nova burst. Then the energy release is compar­
able with the star's thermal energy [7] and amounts 
to about 1050 erg. In such a case, a star with mass 
near that of the sun ( 2 x 1033 g) is heated up to a 
temperature of 50 to 100 kev. Since the photoneu­
trino radiation power per gram of material is 
106 -108 erg/g-sec at these temperatures, the 
neutrino luminosity of a supernova is 1039 - 1041 

erg/sec. This is comparable with the usual super­
nova luminosity (107 -108 times the sun's). Dur­
ing a burst which lasts 50 to 100 days, the neu­
trinos carry off 1046 -1048 erg, which is 10-4 -10-2 

of the total energy released. Thus, although the 
neutrino luminosity during a stellar supernova 
burst is colossal, neutrino processes do not play 
as large a role in the energy balance of supernovae 
as they can play in novae before and after bursts 
and in stars evolving into white dwarfs. 

Note added in proof (September 19, 1961). After this article 
was submitted for publication, a paper on the same subject 
was published by Chiu and Stabler [Phys. Rev. 122, 137 
(1961)]. However, they do not consider the photoneutrino 
radiation by a nonrelativistic degenerate electron gas. More­
over, it should be noted that owing to the use of an unusual 
relation between probability and cross section [for the cus­
tomary relation, see C. Mj<Sller, Kgl. Danske Videnskab. 
Selsk., Mat.-fys. Medd. 23, 1 (1945)] their expression for the 

photoproduction cross section differs from ours by a factor 
(pk)/Ew and is not relativistically invariant. We also note 
that they used Heaviside units, but mistakenly set e2 jtic = 
1/137, instead of e2/4rr1i.c = 1/137, and their results are 
therefore too small by a factor 4rr. 
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ERRATA 

Vol No Author page col line Reads Should read 

13 2 Gofman and Nemets 333 r Figure Ordinates of angular distributions for Si, Al, 
and C should be doubled. 

13 2 Wang et al. 473 r 2nd Eq. 
e2[ 2 2m e2[ 2 ( 2m 55' 

cr._. =43 w2 (ln --0.798) crl'- = 9n• w• In m;-- 48) . n ml'-

473 r 3rd Eq. (e2[ 2/4n3) w2 ;;;;. ••• (e2f2/9n3) w2 ;;;;. ••• 

473 r 17 242 Bev 292 Bev 

14 1 Ivanter 178 r 9 1/73 1.58 X 10--6 

14 1 Laperashvili and 
Matinyan 196 r 4 statistical static 

14 2 Ustinova 418 Eq. (10) 1 
- [~ (3cos2 8 -1) ... r [- 4 (3cos~ 8 -1) ... 

4th line 

14 3 Charakhchyan et al. 533 Table II, col. 6 1.9 0.9 
line 1 

14 3 Malakhov 550 The statement in the first two phrases following Eq. (5) are in 
error. Equation (5) is meaningful only when s is not too large 
compared with the threshold for inelastic processes. The last 
phrase of the abstract is therefore also in error. 

14 3 Kozhushner and 
Shabalin 677 ff The right half of Eq. (7) should be multiplied by 2. Conse-

quently, the expressions for the cross sections of processes 
(1) and (2) should be doubled. 

14 4 Nezlin 725 r Fig. 6 is upside down, and the description "upward" in its 
caption should be "downward." 

14 4 Ge'ilikman and 
... [ b2 ~1 Kz (bs) r ... [ b2 ~1(-1) 5HK2(bs) r Kresin 817 r Eq. (1.5) 

817 r Eq. (1.6) <l>(T)= ... <l> (T) :::::o ••• 

818 1 Fig. 6, Y.s (T) ><s (T) 

ordinate axis ><n (Tc) ><n (T) 

14 4 Ritus 918 r 4 from bottom two or three 2.3 

14 5 Yurasov and 
Sirotenko 971 Eq. (3) 1 < d/2 < 2 1 < d/r < 2 

14 5 Shapiro 1154 1 Table 2306 23.6 

1455 


