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Applying the temperature-dependent diagram technique and the method of analytic continua
tion, we give a derivation of the transport equation for the distribution function of excitations 
in a degenerate Fermi system. The analytic properties of the four-vertex part are studied 
and the equation for it is extended. We consider briefly whether the results obtained can be 
applied to the microscopic theory of a Fermi liquid. 

l. It is well known that a degenerate Fermi system 
has an excitation branch of the Fermi type, and the 
excitations are weakly damped when their momenta 
are sufficiently close to the limiting Fermi momen
tum. This property is the basis of the semi-phenom
enological theory of a Fermi liquid given by Landau. 
An application of the quantum field-theoretical 
methods made it possible to obtain a microscopic 
interpretation of the most important quantities in 
the Fermi-liquid theory. [l-3] 

The present paper is devoted to a derivation of 
a transport equation for a degenerate Fermi sys
tern. To be specific, we consider the electric con
ductivity of a normal metal. An application of the 
temperature-dependent diagram technique and the 
method of analytic continuation [4] yielded an equa
tion for the distribution function of the excitations 
in which the collision integral was expressed in 
terms of the four-vertex part r. The connection 
between the collision integral and r is, of course, 
independent of the character of the transport prob
lem. The results obtained can thus be helpful for 
studying different problems about the kinetics of 
a Fermi liquid. 

2. When we use the temperature-dependent 
diagram technique to calculate the conductivity, 
it is convenient to start from the expression 
(see [5]) 

(k = (_;_)2 \.(' d3pd3p' K~. (k, w)- K~. (k, 0) , 
al'-v • w) m ~) (2:rt)6 p.,. iw p • 

(1) 
where e and m are the electronic charge and 
mass,* k and w the wave vector and the fre
quency of the external field, and Kl}p' ( k, w) the 
Fourier component of the retarded commutator 

K~· (k, t) = i([e'<H-1'-Nlt a;'-k/2 ap'+kl2 e-i<H-1'-N)t • 

a;+k/2 ap-k/21 > e {t). 
*We use a system of units in which 1i = 1. 

(2) 

FIG. 1 

The average is over a grand canonical ensemble. 
We now introduce the function 

Rpp' (k, -r) 

= ( T~ (e<H-1'-N)~ a;'-k/2 ap'+k/2 e-<H-I'-Nl,)a;+k/2ap-k ~>· 

The Fourier component of this function 
liT 

Kpp' (k, wm) = { ~ e"'m' K;,p' {k,-r) d't; Wm = 2mniT (3) 
-i!T 

and the quantity Kj}p,(k, w) are values of the same 
function, which is analytic in the upper half-plane, 
respectively in the points Wm (m > 0) on the imag
inary axis and on the real axis. Moreover, 

K~· (k, 0) = Kpp' (k, 0). (4) 

One can check this by performing a Lehmann ex
pansion of the functions KR and K. 

The function Kpp' (k, wm) can be represented 
by a sum of the diagrams depicted in Fig. 1. These 
diagrams correspond to the expression 

fKpp•(k, mm) ~= -- T~Gp+k'2(e" + <tJm) Gp-ki2(en) Op-p' 
n 

nn' 

(5) 

Here Gp( En) is the temperature-dependent Green's 
function defined at the set of points En = ( 2n + 1) 1ri T, 
and rpp'k( En, En'; Wm) is the four-vertex part. 

3. In order to carry out an analytic continuation 
in (5) it is necessary to elucidate the analytic prop
erties of r. To do this we consider the Lehmann 
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FIG. 2 

expansion (given in the Appendix) of the two
particle Green's function K (En, En'; Wm) with 
which r (En, En'; wm) is connected in the well
known way. (We dropped the momentum sub
scripts as they will not interest us in this section.) 

It is clear from that expansion that K ( E, E'; w) 
as function of the complex variables E, E', and w 
has singularities when 

a) Im e .~ 0, lm (e + w) = 0, lm c' .~ 0, 

Im (e' +m) c 0; 
b) lm (e + e' + w) = 0; 
c) Im w == 0, Im (e - e') = 0. (6) 

These singularities correspond to cuts parallel to 
the real axis in the complex planes of each argu
ment. The whole space of the variables E, E', and 
w is thus divided into several regions in each of 
which r is an analytic function of any of its argu
ments, while the values of the other arguments 
are fixed. 

Green's functions which are external end points 
of r and which are included in K also possess 
singularities of the type a). Therefore the pres
ence of these singularities in the function K still 
does not mean that they also occur in the function 
r. However, a study of the separate diagrams of 
the vertex part shows that r has singularities of 
the type a). As an example we consider the dia
gram given in Fig. 2. This diagram corresponds 
to the expression 

fl(En, En•; Ulm) =T ~ G (En")G (En-\ En• +wm- En") 
n" 

X D (e"- En") D (e," - Ell•). 

Here D is some boson Green's function corre
sponding to the interaction. It is most convenient 
to study the analytic properties of this diagram 
by substituting for the summation over n" an in
tegration: 

rl (en, En•; Wm) = 4~i ~ dz th 2~ G (z) G (en + En• 
c 

+ Wm - z) D (en- z) D (z- En•) + T [G (en) G (En• 

+ Wm) D (0) D (e 11 - En•) + G (en•) G (en + Wm) 

X D (en - En•) D (0)]. (7)* 

The contour C is depicted in Fig. 3; it goes around 
all poles of tanh(z/2T) except z =En and z =En' 
and does not contain other singularities of the inte-

*th = tanh, cth = coth, ch = cosh. 

E!~---J~ ---~·!!_ 
]//I '1 
/Jli D', 

// I ', 
(3.3) ~2.3) (1. 3) 

FIG. 4 

grand. The integrals over the arcs of the large 
circle are equal to zero. The integrals over the 
small circles are compensated by terms outside 
the integral. Taking into account that 

e + en 8 e··+ wm e 
th :Ir = cth 27' and th ~ = th 2T, 

we get thus for r 1 the expression 
00 

f 1 (e 11 , t!. 11•;wm)= 4~i ~ de"{th;; [GR (e") 
-00 

- GA(e")lG(e11 + En• +wm- e") 
e" 

X D (en- e'') D (e"- En•) + th ZT (GA (- e") 

- GR (- e")JG(e" +En +ell' + Ulm)D(- e"- Bn•-wm) 

E" 
X D (e" +En + wm) +cth ZT (DA (- e") 

-DR (- e")l G (e• +En) G (En• +wm- e") D (e" +en 

E" 
-8 11•) + cth 'IT (DR (e") -DA (e")J G (e" + En•) 

X G (en + Wm - e") D (en - En• - e")}. (8) 

The integration in the vicinity of E" = 0 must refer 
to the principal value. Since the functions G and 
D have singularities when the imaginary parts of 
their arguments tend to zero, the diagram consid
ered here will give all singularities (6), as can be 
seen from (8). 

We shall in the following be interested in the 
properties of r ( E, E'; w ) as functions of E and E' 
for fixed values of w, with Im w > 0. It is con
venient in that case to represent the analytic prop
erties of r as in Fig. 4, where the singularities 
(6) are plotted in the Im E, Im E' plane. The lines 
drawn in the figure divide the plane into 16 regions, 
each of which corresponds to a function r which 
is analytic in that region in any of its arguments. 
The rectangular regions in the figure are num
bered by two_ indices (i, k), each of which takes 
on three values. Some of these regions are divided 
into parts by the diagonal cuts. These parts are 
denoted by Roman numbers. Such a system of no
tation is also used for the r functions (for in
stance, rf 1). 

4. We c'an now carry out the analytic continua
tion in Eq. (5). To do this we first replace the 



888 G. M. ELIASHBERG 

sums over n and n 1 by integrals, in the same way 
as was done in the case of the diagram of Fig. 2. 
We can write 

T ~ r (en. en'; Wm) G (en' +wm) G (en') 
n' 

= 4~i ~ dz' th ;~ r (en. Z 1
; Wm) G (z' + Wm) G (z'), 

L' 

where the integration is performed in the positive 
direction along the edges of the cuts: Im Z 1 = 0, 
Im Z 1 = -wm, Im Z 1 =En, and Im Z 1 =-En -wm, 
while near the points z 1 = En and z 1 = - En - Wm 

the principal value of the integral must be taken. 
One verifies easily, by writing out explicitly the 
integrals over the different parts of the contour 
L', that the expression obtained has singularities 
at Im z = 0 and Im z = - wm, as function of the 
complex variable z corresponding to En· Using 
this fact we can replace the sum over n in Eq. (5) 
by an integral. As a result we obtain an expression 
which is an analytic function of w in the upper half
plane. Performing the analytic continuation with 
respect to w on the real axis we get finally 

00 

K.R(w) = - 4~i ~ de [ th 2~ /(1(e, w) +( th 8 i;. 00 

-oo 

e) ( e+w ] - th 2TK2 e, w) - th -w-Ka (e, w) , (9) 

where 

tla1 (e, e'; ro) = th ;~r~1 (e, e'; ro) 

th 8' + 8 + (J) [ rii( 1 ) l 1 +c 2T a1 e, e ; w - f 31 (e, e; w)l, 

( e' + w 8') ti32 (e, e'; w) = th 2T- th 2T fa2 (e, e'; ro); 

GT ( I. ) _ th 8' + (J) ri ( I. ) /if aa e, e ' ro - - 2T aa e, e ' ro 

e' - e . n , n , - cth 2T [f33(e, e; w) - f 33 (e, e; w)]. 

The problem of the analytic continuation of (5) is 
solved by Eqs. (9) to (12). 

(12) 

5. For the following it is necessary to elucidate 
some properties of the Green's functions 

GR. (x, x') =- i <{'ll (x), 'IJ+ (x')})8(t -- t'), 

GA (x, x') = i<{'IJ (x), 'IJ+ (x')})8(t'- t). 

In the momentum representation we can write 

a: (e) = [e- e~- ~: (e)]-1, (13) 

where E~ = ( p2 I 2m ) - p.. The fact that there are 
weakly damped fermion excitations present in the 
system corresponds to a well-defined small imagi
nary part of ~f}< E), namely such that, if the tem
perature is sufficiently low and E "' T, E~ .... T; 
Im ~ ~ ( E ) « T. It follows from this that if E "' T 
and vI p -p0 I "' T (v is the velocity on the Fermi 
surface), 

(14) 

K.1 (e, w) = g1 (e, w){ 1 + 4~i ~ de' t11k (e, e'; w) gk (e', w)}. I where ~p is the root of the equation E- E~ 
(10) - Re ~p (E) = 0, and 

g1 (e, w) =GR. (e + w) GR. (e), 
g2 (e, w) =GR. (e + w) GA (e), 
g3 (e, w) = GA (e + w) GA (e). (11) 

(15) 

The quantities tlik are connected with the functions We consider now the quantities gi defined by 
r ik which arise because of the analytic continuation Eqs · (11) · When w « T and vk « T • 

of the vertex part, as follows: g1 (P, !()=[GR. (P)]2; P = (e, p), !( = (w, k), 

ffn (e, e'; w) = th ;~r~1 (e, e; w) i.e., we can assume that g1 is in that case inde

+ cth 8 '2--:; 8 [f~~ (e, e'; w)- r~1(e, e'; w)J. 

tll2 (e, e'; w) = ( th 8,2~ (J)- th 28~) r12 (e, e'; w), 

iT ( I • ) - th 8' + (J) rJ ( I • ) 13 e, B , w - - 2T 13 e, e , w 

h 8' + 8 + w II( , I , - ct 2T [f13 e, e ; w)- f 13(e, e; w)J, 

tl21 (e, e'; w) = th ;~ r21 (e, e'; w), 

tl2de, e'; w) =(cth 8 ,;.8 -th ;~)r~i(e, e';w) 

1 t e' + 8 + w h 8' - 8) III ( , . + \c h 2T -ct 2T f 22 e, e, w) 

lth 8' + w 8' + 8 + w) IV '. + \ 2T -cth 2T f 22 (e, e, w), 

GJ ( I • ) - th 8' + (J} r ( I • ) ., 23 e, e , w - - -w-· 23 e, e , w , 

pendent of w and k. If this quantity occurs in an 
integral where values E "' T and v I p -Po I "' T 
are important, we can use for it the simple ex-
pression 

6 = +0. (16) 

The quantity g3 = gf has the same properties. Only 
the function g2(P, K) = Gf}+k/2( E +w) • Gfi-k/2( E) 
depends appreciably on w and k for small values 
of w and k. 

We shall see that in all integrals which contain 
g2 the domain of integration is limited by the val
ues E"' T and vI p -p0 I "' T. We can thus write 
for w « T and vk « T 

g2 (P, !() = 2nia2b ( e - ep)/( w - vk + 2iy p) (17) 
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where 

v = p!m' =a [p/m + VP Re ~P (e) i•~•p], 

r P = - a Im ~~ ( ep) > 0-. 

(18) 

(19) 

In accordance with what was said before, 'Yp « T 
when v I p -Po I ""' T · 

6. We consider now in somewhat greater detail 
the properties of the quantities ffik· We note first 
that some graphic representation of these quanti
ties is possible. We introduce the irreducible 
parts gr!~ which are obtained, as the result of 
the anal;-tic continuation and of applying Eq. (12), 
from all diagrams r<1>(€n, En'; Wm) Which do 
not contain a pair of lines of the type G (En + Wm) 
G (En). One can then easily verify that ffik sat
isfies the equation 

5",-k(P, P'; K) = :lfW (P, P'; K) 

+ 2_ <12 )• \ d4P"ff~P (P, P"; K) gt (P", K) fftk (P", P'; K). 
t :rt J (20) 

This means that ffik can be written as the sum of 
diagrams containing different numbers of irreduc
ible parts ff<1>, which we depict by shaded rect
angles and which are joined by pairs of lines gz 
which we shall call sections l. 

We saw that from among the three functions 
gi only g2 depends appreciably on w and k when 
w and k are small. It is thus expedient to intro
duce for each of the functions ffik the totality of 
diagrams :lfi~ which does not contain the section 
2. We shall then have instead of the set of Eqs. _ 
(20) one equation for ff22: 

i!f22 (P, P'; K) --~ 5"~~> (P, P'; K) 

+ __ t _ \d4P" ur(o>(p P"· K) g (P", K) 
2i (2:n:)• J "' 22 ' ' 2 

X 5"22 (P", P'; K), (21) 

whereas all other quantities ffik can be expressed 
in terms of 5"22 and gr!~ as is shown in Fig. 5. 
If vk « T we can assu~e that all ff1~ are inde
pendent of k. The dependence of these quantities 
on w occurs in practice only because of the hy
perbolic functions in (12). In particular, the func
tions 5"12 and 5"32 are proportional to tanh [( E + w )/ 

Jik=i-+~+~ 
N'2, It 1'2 

7;,=~+~i 
FIG. 5 

i_ [GR(e)]-1 ~~ I +-1--- \d4P' {ffu (P, P') [GR(P')I2 
a, P 2i (2n)• j 

+ 5"13(P,P')lGA (P')J2}, (22) 

:P [G~ (e)J-1 

__ _£__ __ 1 _ I d4P' p' {:lf (P, P') [GR(P')J2 
- m 2i (2n)4 ) 11 

+ff13 (P, P') [GA (P')J2}. (23) 

7. We show now that the conductivity u JlY can 
be expressed in terms of the single function ff 22 
only, while the other ffik determine the values 
of renormalization constants. 

Bearing in mind the case w « T, kv « T we 
retain a dependence on w and k only in g2 and 
5" i2· It then follows from (1) and (9) that we need 
only be interested in those diagrams K1 ( E, w) 
and K3( E, w) which contain at least one section 2. 
All those diagrams and also the diagrams forming 
K2 ( €, w) are illustrated in Fig. 6, in which the 

h t •t• w-(O) h' h rectangles correspond to t e quan 1 1es (!} w w 
do not contain sections 2, and a circle represents 
gr22 • Substituting the expressions for the Ki cor
responding to these diagrams into (9) and (1), and 
applying Eq. (17), we get 

i ( e ) 2 2 f (' d"p Q(l) ( ) (1/2T) ch-2 (Ep/ 2T) 
Gp.v (k, m) = 2 m a \_ ,\ (2n)" 1'- p w -vk +- 2iip 

(2 ) _ a2 (' d3pd3p' Q (ll ( ) 
X Qv (p) --t- 2 J (2nJ" I' p 

(1/2T) ch-2 (epi2T) .!T22(p, p'; k, w) Q~2) (p'), 
X (w-~k+-2trp](w-v'k+2ilp•) (24) 

2T] -tanh (E/2T) and tend to zero for w = 0. There- where Q<1>(p) and Q<2>(p) are the values at E 
fore, when w = 0 the functions ffik• with the excep- = Ep of the following ~uantities 
tion of ff 22 , do not contain diagrams which have at 
least one section 2. 

We need relations connecting the derivatives of 
the Green's functions with the quantities ffik at 
K = 0. These relations can be obtained in a way 
similar to the one used for T = 0 [2] or through 
an analytic continuation of the relations for the 
temperature-dependent diagram technique. [s] We 
shall therefore give them without derivation 

+·+~+~ 
i 'I= 2, k'I=Z 

FIG. 6 
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2T e 1 C " c," Q~l) = p..,. + w ch2 2T 2i (2n)4 J d4P" p..,. th 2T [gi (Pn) 

x :Ji~> (P", P; w)- ga (P") ff~g> (P",. P'; w)], (25) 

Q<2> = p ' _f_ \ d4P" [J[<o> (P P") g (P") 
p. I' T 2i (2n )4 .) 21 ' 1 

(26) 

We took here into account that JT~f>(p, P"; K) 
::::;JT~f>(P, P"; 0). The quantities &1i2(P", P; w) 
contain a factor (w/2T) cosh-2(Ep/2T), and are 
otherwise independent of w. 

Using Eqs. (12) we can write 

Q<1> - + 1 \ d4P" " t·h e" [ (P") r<o> (P" P) 
P. - p..,. 2t t2n)4 j p..,. 2T g1 12 • 

- ga (F") n~> (P", P)l, 

Q<2> - 1 \ d4P" " th~T" [[2<01> (P, P") gl (P") I' - p..,. + 2t \2n)4 .) p..,. "' 

- fi~> (P, P") g a (P") l. 

By considering the separate diagrams of the vertex 
part or the Lehmann expansion for the two-particle 
Green's function (see Appendix) one can easily 
check that 

f,2 (P", P) = f~t (P, P"), 

Thus, Q<0 = Q<2> = Q, where Q is a real quantity. 
It is clear that 

Q (p) = ap. (27) 

From our earlier considerations it follows that 

a2 = (m/am•)2 • (28). 

We write the quantities JTW and JTW which occur 
in (26) in the following form: 

:1<~~ (P, P")= y [ff1; (P, P") +ffat(P, P")] +{ff~~>(P, P") 

--H ff11(P, P") + ffat (P, P"l]}· 

A simple, though rather tedious study of the sepa
rate diagrams shows that when E "' T the second 
term differs from zero only in an interval E" "' T, 
while outside that interval it decreases exponen
tially. Assuming that all diagrams have this prop
erty we get the result that one can in (26) replace 
JT~f> by H ff1i + ff3iJ. Indeed, if we substitute the 
difference JT~f>- ![ff1i + ffail into (26), we find 
that in the integral the values E" "' T, v I p"- Po I 
"' T are the important ones. Since we are, more
over, interested in the value of Q ( p) when 
v I p- Po I "' T one may assume that the above
mentioned difference depends only on p- p". We 
get thus when we use Eq. (16) and integrate over 
Ep" = v (p"-p0 ) the result that the integral van
ishes. Equation (28) follows then from (23) and 

(18). Equations (24), (27), and (28) completely de
termine the connection between af.J.v and ff22 • 

8. We now introduce the quantity fp(k, w ), 
which is the change in the excitation distribution 
function which is linear in the external field E, 
starting from the equation 

j..,. (k, w) = ~· ~ (~~8 p..,. fp (k, w). 

It then follows from (24), (27), and (28) that 
i e (1/2T)ch-2(ep I 2T) 

fp (k, w) '=2m• w-vk+2ir 
p 

{ 
1 \ d"p' a2f7 (p, p'; k, w) '} 

X Ev Pv + 2 .) (2n)s ' w- v'k + 2ir p' Pv · 

(Here and henceforth we drop the subscripts in 
ff22.) The equation for fp(k, w) follows directly 
from Eq. (21) for ff. Introducing, as usual, in
stead of fp a function cpp such that fp(k, w) 

I ( Ep/T )-1 = cpp(k, w) dnp dEp, where np = e + 1 , 
we get 

i (w- vk) qJp (k, w) 

=evE + i~ ~ (~:;3 JJ<o> (p, p'; k, w) qlp' (k, w) 

(29) 

+ 2ypcpp (k, w). (30) 

The quantity JJ<0> representing all diagrams that 
do not contain sections 2 consists of an irreducible 
part JJ<0 which neither contains sections 1 nor 3 
and of diagrams which have different numbers of 
sections 1 and 3. Such diagrams are illustrated 
in Fig. 7. It is clear that they all contain the quan
tity Jli2( P, P') and it then follows from (12) that 
they are all proportional to ( w/2T) cosh-2 ( Ep/2T ). 

If we also split off from JJ<1> the part propor
tional to w we write :J<O> in the form 

JJ<o> (p, p'; w) = ffitl (p, p') + ;T ch-2 ;~ ff<2l (p, p'). (31) 

By studying separate diagrams or from the Leh
mann expansion for the two-particle Green's func
tion we can check that ff ( P, P'; K) is a purely 
imaginary quantity for K = 0. Since g2(P, K) is 
real at K = 0, ffm(P, P') is also a purely imagi
nary quantity. The expression 

r:1 r!t r2 r,/'! :Jir~'! 

i~ + z]illi:tfJ k llil(z 
i#Z, lr*Z 

FIG. 7 

(32) 
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is thus the collision integral in the transport equa
tion (30). We explain the significance of the second 
term in (31) in the following. 

9. There is, of course, a direct connection be
tween the transport equation and Eq. (21) for the 
vertex part tf not only for the problem of elec
trical conductivity considered here. In order to 
establish the connection between the quantity tf 
introduced by us and the vertex part occurring in 
the zero-temperature diagram technique, we show 
how one can obtain from (21) the equation for zero 
sound in a Fermi liquid. [1] 

We consider Eq. (21) in the limiting case wT 

» 1, where T is the relaxation time which is of 
the order of magnitude of yp1. Since the collision 
integral (32) can be written in the form cp IT for 
estimating purposes, it follows that 5"<1> is of the 
order of magnitude of J.tiP~TT. On the other hand, 
if we estimate the simplest diagrams we get eas
ily the result that tr<2> in (31) is of the order of 
magnitude J.'IP~. Therefore, when WT « 1, the 
quantity tr<O> Rj tr< 1>, whereas for WT » 1 

ffi 2 11P p-<o> (p, p'; w) z 2T ch- 2T ff<2l (p, p'). 

We shall be interested just in that case. Neglect
ing in (21) terms of the order of magnitude (wT)-1, 
we get 

ff (p, p'; k, w) = 2~ ch-2 ~~ ff!2l (p, p') 

a• \" d"p" 1 _2 liP. w$"<2> (p, p") • , . 
+ 2 j (2lt)1 2T ch 2'i' w- v"k + i6 ff (p • P • k, w). (33) 

Introducing the notation 

ff (p, p'; 0, w) = 2~ ch-2 ;~ f"' (p, p') (w't' > 1), (34) 

we get for k = 0 for rw the equation 

f'" ( ') _ w-(2) ( ') + a• \ dp• 1 p, p - ill p, p ~ J \2lt)3 2T 

8 • 
xch-2 ;T $"<2> (p, p") r"' (p", p'). (35) 

In the integral term in this equation and also in Eq. 
(33) practically only the quantity cosh - 2 ( Ep" /2T) 
depends on the magnitude of the vector p". Inte
grating over p" and eliminating tr<2> from (35) and 
(33) we get thus 

w ( , . k ) - (J} h-2 lip' r"' ( ') a•pn \ 
01 p, p ' ' <u - 2T c 2T p, p + (2ll)" .) dOp• 

p"kf'" (p, p") w ( • , k 
X w- v"k + i6 ::1 P' P; ' w). (36) 

To find the natural vibrations corresponding to 
zero sound we must drop the free term. The equa
tion we obtain then is the same as Landau's equa
tion. [lJ We can thus conclude that the quantity rw 
is the same as the corresponding quantity occur
ring in the zero-temperature diagram technique. 

(The case wT » 1 corresponds for T = 0 to the 
limiting transition k = 0, w - 0.) When deriving 
Eq. (36) we completely neglected terms of the or
der (wT)-1. When such terms are taken into ac
count it is possible to obtain the damping of zero 
sound and also to consider other phenomena con
nected with damping. To do this, it is, however, 
necessary to study in detail the structure of the 
quantities g-m and Yp. which is outside the frame
work of the present paper. 

The author is very grateful to L. E. Gurevich 
and V. I. Perel' for discussing a number of prob
lems connected with the present paper. 

APPENDIX 

We perform the spectral expansion of the two
particle temperature-dependent Green's function 

K (x1x2; XsX,) = <T'¢ (xl)"' (x2) '¢+ (xs) r+ (x,)), 

where 

'¢ (X) = e(H-p.N) ~ '¢ (r) e- (H-p.N) ~, 

This function consists of 24 parts corresponding 
to different permutations of the 1/J operators. All 
permutations fall into six cycles with four permu
tations in each. 

The contribution from the cycle created by the 
order 1-2-3-4 is equal to 

K1(x1x2; Xs x,) = ~ (al 1'¢ (rl) I a2) (<Xzl"i' (rz) i as) 

X (a31'¢+ (rs) I U4) (a, I'¢+ (r,) I a1) exp {£1 ('t'l- 't'4) 

+ £2 ( 't'2- 't'1) + Es ( 't's- 't'z) + E, ('t',-'t's)} 

X [e-EJT 0 ('t't- 't'2) 0 ('t'2- 't's) 0 ('t's- 't'4) 

-e-E.JT 8 ('t'2- 't's) 8 ('t'a- 't',) 8('t',-'t'l) 

+ e-Eo~r 8 ('t's- 't',)8 ('t',- 't'l)IJ('t'1-'t'2) 

- p- EJT9 ('t'4 -'t'l) 8 ('t'1 - 't'2) IJ ('t'2- 't's)J. (A.1) 

Here all energies Ei are calculated from J.tNi. We 
choose from the four differences Ti - Tk any three 
independent ones, for instance t1 = T1- T2, t 2 = T2 
- T3, and t 3 = T3 - T4 and carry out in them a peri
odic continuation from the interval ( -1/T, 1/T) 
onto the whole axis of imaginary times. To do this 
one needs expand (A.1) in a triple Fourier series 
in terms of t1, t 2, and t 3, taking into account that 
we must have I t1 + t2 + t 3 1 = I T1- T4 1 s 1/T. 
Carrying out next a Fourier-series expansion in 
all four Tf, we get for the Fourier components 
the expression 
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The function Ki depends in actual fact on three 
variables for which we choose E = E4, E' = E2, 

and w = E1 - E4 = € 3 - E2• In terms of these vari
ables 

/(~ (e, e'; w) = ~ A (I, 2, 3, 4) 

e-E,,T 

+ (£1-Ea+~+e' +w)(£2-Ea+e')(£4-Ea+e' +w) 

-E,T ~ 

- (E1-E,+e)(E2~E,-w)(Ea-E,-e')f ' (A.2) 

where E = (2n+1)7riT; w = 2m7riT; the quantity 
A ( 1, 2, 3, 4) is the product of matrix elements of 
the 1/J operators occurring in (A.1). The corre
sponding formulae for the other cycles are ob
tained from (A.2) by simple permutations of the 
indices. 
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