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It is shown that for anarbitrary reaction involving the formation of three particles one can 
separate (with an accuracy to terms which are linear in energy) the long-range interaction 
contribution, which is proportional to the pair-interaction amplitudes and cannot be expanded 
into a series in the above-threshold momenta. A separation of this type allows us to deter­
mine the scattering amplitude for unstable particles at zero energy by analyzing the reac­
tions in which they are produced. The reactions K+- 21r+ + 7!"- and 21r0 + 1r+ are considered 
in detail. 

1. INTRODUCTION 

REACTIONS involving formation of three particles 
are at present the only practical means of studying 
interactions between unstable particles. However, 
it is often impossible to extract information on the 
amplitudes of interactions of unstable particles 
from data on the energy and angular distributions 
in the reactions by which they are produced, owing 
to the complex character of the production and sub­
sequent three-particle interaction. The only ex­
ceptions are cases of sharply pronounced reso­
nances, so that experimental investigations fre­
quently reduce to searches for such resonances. 

One of the most important theoretical problems 
in this field is to ascertain whether it is possible 
to gain unambiguous information on the amplitude 
of pair interactions from an analysis of reactions 
in which three particles are produced. This ques­
tion is the subject of many papers, most noteworthy 
of which is that of Chew and Low, [i] who proposed 
to determine the pair interaction amplitude by ana­
lytic continuation of the amplitude of particle 
production in the momentum transfer variable. 

Several methods have been proposed [2- 4] for 
determining the zero-energy amplitude of scatter­
ing on stable particles from an analysis of the 
reactions near threshold. It was shown earlier [2] 

that the correlation between the momenta of the 
produced particles depends essentially on the in­
teraction in the final state and can serve as a 
means of determining the scattering amplitudes. 

We shall show in the present paper that it fol­
lows even from the results of [2] that the energy 
distribution of the produced particles also depends 

appreciably on the scattering amplitudes of the 
particle pairs. 

In view of the presence of interaction in the 
final state, it becomes impossible to expand the 
reaction probability in the momenta of the pro­
duced particles and to retain only a few terms at 
low energy. The probability of the reaction de­
pends in essential fashion on the ratios of the par-
ticle momenta to their possible maximum value at 
specified full energy. Accurate to quantities of 
order (kr0 ) 2, where k2 is the mean square of the 
momentum of the produced particles and r 0 is the 
interaction radius, this dependence can be deter­
mined and the reaction probability expressed in 
terms of the pair-interaction amplitudes at zero 
energy and a small number of constant parameters 
[formulas (5) and (6)]. The additional parameters 
are due to the interaction at small distances and 
in the p state of relative motion. The result ob­
tained allows us in principle to determine the pair 
interaction amplitudes from the momentum dis-
tribution of the particles in their production re­
action. 

In Sec. 3 we rederive the results of [2] by ana­
lyzing the analytic properties of the three-particle 
production amplitude. This derivation is simple 
and clear. 

In Sec. 4 we obtain the distribution over the 
momenta of the pions produced in the T and T' 

decays (K+- 21r+ + 1r-, K+- 21r0 + 1r+) as a func­
tion of the pion-pion scattering amplitudes, a2 and 
a 0, and one unknown constant parameter in each 
reaction [formulas (18), (19), (16) and (13)]. The 
dependence of the probabilities of both decays on 
the relative-motion energies of similarly charged 
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pions is calculated [formula (21) and Fig. 6], as 
is the dependence on their energies in the K+ rest 
system [formula (22) and Fig. 7, the analog of the 
angular distribution]. 

The best way of obtaining the scattering ampli­
tude is to study the dependence of the decay 
probability either on the energy difference in any 
of the decays or on the relative-motion energy in 
the K+- 21r0 + 1r+ decay. 

2. FORMULATION OF RESULTS 

The main result of [2] is that the wave function 
of three spinless particles [masses mi, m 2, m3, 
momenta Pi• p2, p3, and relative pair momenta 
ki2• ki3• k23 - ¢ki2,ki3,k23 ( ri, r2, ra)] has at low 
energies (ki[ro « 1 where r 0 is the interaction 
radius) in the region Pi2 ~Pia"' P23"' ro (pi[ 
= I ri- rzl ), accurate to terms of order kfzr8, the 
form 

(1) 

where ¢0, 0, 0 ( r i• r2, r3) is the exact wave function 
of the three particles at zero energy. C ( ki2, kia• k23 ) 
is a standard factor, which depends only on kil and 
on the zero-energy scattering amplitudes of the 
particle pairs, ail, which will be written out be­
low. ¢' tends to zero as kzi - 0 and contains the 
dependence on the cosines of the angles between 
p3 and ki2, p2 and kia• and Pi and k23 , raised 
to a power not higher than the first. 

Formula (1) follows almost directly from sim­
ple considerations, connected with the penetrabil­
ity of the centrifugal barrier. [2] The factor 
C ( ki2, ki3, k23 ) takes into account the interaction 
between particles in configurations such that the 
distance between two particles is on the order of 
r 0 and the third is outside the force radius. It is 
natural for the contribution from the interaction 
in such configurations to be expressed in terms 
of the particle-pair scattering amplitudes. 

If there are no interactions in such configura­
tions, particles with non-vanishing relative angu­
lar momenta can penetrate the region Pi2 "' P13 
"' P2a"' r 0 only by overcoming the centrifugal bar­
rier, the penetrability of which is kf\pf, kf\p}, 
or k~pf, where A is the angular momentum of 
the particle pair and L the momentum of the third 
particle about the center of gravity of the first two. 
Therefore, for example in the case of a state with 
zero total momentum, the only states possible 
(accurate to terms quadratic in the momenta) 
are those with L = A= 1, and consequently states 
where the dependence on the angles between the 

momenta contains the first powers of the cosine. 
This is precisely why the function ¢', which 

contains the contribution of the interactions in 
configurations other than those indicated above, 
depends only on the first powers of the cosines. 
We shall henceforth confine ourselves to states 
with zero total momentum. In this case, obviously, 
the most general expression for ¢' has the form 

(2) 

where ¢'i is independent of the particle momenta. 
An expression for C (ki2, ki3, k23 ) is obtained 

directly from formulas {26) and (32) of [2]: 

C (k12, k13, k23) = 1- ik12a12- ik13a13- ik2aa23 

+ a12a13 U 1 (k12) + J 1 (kd] + a12a23 !J 2 (ku) 

+ J 2 (k2a)1 + a13a23 !J 3 (kl3) + J 3 (k23) I, 

Ji ( kil) are standard real functions of order kfz, 
calculated in [2] [formula (31)] and given below. 

(3) 

Formula (3) differs from the sum of (26) and 
(32) in [2] in that summation is carried over l 
and two terms dependent on ki2 are added. In [ 2] 
these terms were left out, for only the dependence 
on the angle between ki2 and p3 was of interest. 
Addition of these two terms to C ( ki2, ki3, k23) 
ensures independence of ¢' of the higher powers 
of the cosines of the angles between any of the 
directions listed above. 

The physical meaning of the individual terms 
in (3) is exceedingly simple. The terms linear in 
kil correspond to a single account of the interac­
tion. Terms containing Ji ( ki[) are due to two 
successive particle interactions. These two types 
of terms can be obtained from the Feynman dia­
grams shown in Figs. 1 and 2 respectively. [S] 

With the aid of (1), (2), and (3) it is easy to cal­
culate the amplitude of a reaction producing three 
particles with zero total momentum, accurate to 
terms quadratic in the momenta: 

M (k12• k1a• k22) = Mo {C* (k12, k13, k2a) + a1ki3 

(4) 

where M0 is the amplitude at zero energy. The 
reaction cross section, averaged over all the ori­
entations of the plane containing the momenta of 
the resultant particles relative to the momentum 
of the incident particle, has therefore the form 

da = Mg { 1 + 2a12a1a .lk12k1a + J 1 (kd + J 1 (k13)] 

+ 2a12a2a lk12k2a + J 2 (kd i + J 2 (kd I + 2a13a2a [k1ak23 

+ J 3 (k23) +J 13 (k13)] + a3ki2 --i- a1k~3 + a2k~3} df. (5) 
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Terms such as ki2, ki3, or k~3 in I C (k12, k13, k23 ) 12 
result in overdetermination of the coefficients ai, 
which are not calculated anyway. 

It follows from Eq. (5) that a detailed study of 
the distribution of the momenta of the produced 
particles will in principle yield the pair interaction 
amplitudes, since the contribution due to the inter­
action in the final state depends in a complicated 
manner on kil, and can therefore be separated 
from the simple terms such as a1k~3 etc. 

In conclusion, let us write out an explicit ex­
pression for Ji (kil ), obtained by simple transfor­
mation from formula (31) of [2] :* 

J, (ku) = I, (xil); 

m1m1 

1-l,z = m1 + m1 ' 

Xi! = ku IV 21\1£, 

2x are cos x 

Jt f1-x2 

(6) 

where E is the kinetic energy of the produced par­
ticles. 

Expression (5) for da has the following inter­
esting property. If we examine it as a function, 
say, of E12 = ki2 /2~12 it has at first glance a root 
singularity at E12 = 0, owing to the terms k12k13, 

and k12k23 (k12 = V2~12E 12 ). However, J 1(k12 ) and 
J2(k12 ) also have singularities at E12 = 0: 

J 1 (k12) = - k12 V 211.aE ~1, J 2 (k12) = - k12 V 2p.aE ~z; 
l/p.3 = 11m3 + l!(m1 + m2) (7) 

*A misprint in [2] has been corrected in Eq. (6). 

and in addition 

k13 ~3 k12 - ~1p3, k2a = -' r+na k12 - ~2p3. 
m1 ma ~ ms (S) 

When k12 = 0 we have p3 = v 2~3E , since k~2 I 
2~12 + p~ /2~3 = E, and consequently the singular 
parts in K12k13 + J 1 ( k12 ) and k12k23 + J 2 ( k12 ) can­
eel out, and da does not have a root singularity at 
E12 = 0. The situation is obviously the same when 
E 13 = 0 and E23 = 0. The situation here is similar 
to that in electrodynamics in the infrared region, 
where singularities of the second-approximation 
diagram [the analog of J 1(k12 )] cancel the singu­
larity of the square of the first approximation 
(the analog of k12k13 ) . 

3. ANALYTIC PROPERTIES OF THE REACTION 
AMPLITUDE NEAR THRESHOLD 

In the preceding section we leaned exclusively 
on the results of [2]. In the present section we 
re-derive these results by using only the analytic 
properties of the reaction amplitude. We first 
follow closely Dyatlov's paper. [5] Consider the 
amplitude of the process corresponding to the di­
agram shown in Fig. 3a as a function of the invari­
ants s 15, s 34 and s 12, s 13, s 23 near threshold: 

= (md-- m2 + ma)2+ 2 (m1 -T m~+ m3) E,. 

E-o. 

P;---__ ~Pi 
p~Pz 
~ b fJJ 

FIG. 3 

(9) 

At sufficiently small E the range of variation 
of the invariants sik tends to zero; therefore, if 
the amplitude has no singularities with respect to 
any of the invariants near their threshold values, 
it can be expanded in powers of the deviations from 
these threshold values. Actually, as a function of 
the invariants s 12, s 13, s 23, and s 45, the amplitude 
has singularities precisely at the threshold values. 
These singularities correspond to the diagrams 
shown in Figs. 1 and 4. Generally speaking, the 
amplitude has no singularities in s 15 and s 34 near 
threshold and can be expanded in a series. Such 
an expansion results in terms of the type [5] PI 
and p5 ·Pi or p4 • Pi. In the zero-order term of 
this expansion we should set s 15 and s 43 equal to 
their threshold values, i.e., we should consider the 
diagram of Fig. 3b instead of 3a. 
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FIG. 4 

As was explained in detail in [5], in the first 
approximation in the above-threshold momenta we 
can write the amplitude corresponding to the dia­
gram 3b in the form 

M = Mo (I + ik12a12 + ik1aa1a + ik2aad, 

k71 = [sil- (mt + m1)2] [til/ (m; + mz). (10) 

As already mentioned, this expression corresponds 
to an account of the diagrams shown in Fig. 1. We 
must determine the form of the second-order terms. 

We shall show that the amplitude expansion can­
not contain terms of the type k12k13. Terms of this 
type have root singularities when s 12 = (m1 + m2 )2 
and s 13 = (m1 + m3)2 simultaneously, whereas 
there are no diagrams with such a property. Ac­
tually, according to Landau, to find the coefficient 
of k12 it is necessary to integrate over the lines 
q1 and q2 of the diagram of Fig. 1. At the same 
time (see also [5]) we can neglect the momenta 
p1 and p2 in the remaining parts of the diagram. 
Under these conditions the diagram as a whole is 
independent of k13 and k23, and therefore cannot 
contain terms of the indicated type. 

Consequently, all that we can add at first glance 
is an expression of the type 

(11) 

This would be correct were the amplitude not to 
have at E = 0 the three-particle singularity shown 
in Fig. 4. In the presence of this singularity we 
can have a large number of terms of equal order, 
such as fE k12• ki2 /..fE , · · · · 

Let us examine the three-particle singularity 
in greater detail. The behavior of the amplitude 
riear this singularity is determined by the integral 
corresponding to the diagram of Fig. 4, which in 
the nonrelativistic approximation has the form 

\ d3 d3 d3 () ( + + ) M (qlq2qa) J ql q2 q3 q1 q3 q3 E- E (q1)- E (q2)- E (qa) 

(12) 

If M and A are finite near E = 0, we find that the 
contribution of the three-particle singularity is of 
the order E2 ln E, and therefore cannot be signifi­
cant in terms quadratic in the momenta, i.e., lin­
ear in the energy. 

Thus, the three-particle singularity can con­
tribute to the terms of interest to us only if 
M ( q1q2q3) or A ( q1q~3 I PiP2Pa) become infinite 

in the region of integration. The amplitude 
M (q1q2q3) cannot have poles in the physical re­
gion. The amplitude A (q1q2q3 l P1P2Pa) of the 
three-particle interaction can have in the physical 
region poles corresponding to diagrams similar 
to those shown in Fig. 5. 

FIG. 5 

If we substitute these pole terms in (12) we 
find that the contribution of the three-particle 
singularity is of the order E ln E or kh ln E, 
i.e., it must be taken into account. 

We thus conclude that along with terms written 
out in (11), it is necessary to take into account the 
diagrams of Fig. 4, in which A is described by 
diagrams of Fig. 5. Obviously, these are none 
other than the diagrams shown in Fig. 2. 

4. T DECAY 

In this section we apply the results of the pre­
ceding sections to an analysis of the reactions 

We shall denote by M- and M+ the amplitudes of 
the first and second reactions, respectively. Par­
ticles with like charges will be denoted by the in­
dices 1 and 2. 

Unlike [2] we do not confine ourselves to the 
dependence on the angle between p3 and k12 . Fur­
thermore, the Clebsch-Gordan coefficients in [2] 
have been incorrectly calculated and are corrected 
here. 

We note first that only one of the three unknown 
parameters in (4) and (5), namely a 1, a 2, and a 3, 
remains. By virtue of the symmetry of the ampli­
tude relative to the momenta of particles with like 
charges, a 1 = a 2. By virtue of 

k2 + k2 I k2 _ 3· 2 
12 13 T 23 - 2 X ' (13) 

the quantity ki3 + k~3 is expressed in terms of kh 
and K 2. The constant term 3a1K 2/2 is not essential, 
since it influences only the normalization of the en­
ergy distribution. 

The essential difference between the reactions 
considered here and those described in the earlier 
sections is that, along with simple scattering, 
charge exchanges 1r+ + 1T- ~ 1r0 + 1r0 are possible 
in the final state. It is therefore convenient to in­
troduce in place of ail the quantities a0 and a2 
-the scattering lengths in states with isotopic 
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spins T = 0 and T = 2. In terms of a 0 and a2, 

we have for the scattering amplitudes ai3 +, a8-, 
a~0 , a~+, and a~- the following expressions 

a77 = ao+ = a-o = a a+- = .!. (2a + a.) s s s z, s 3 0 - ' 

The upper signs obviously denote the charges of 
the scattered particles: the charge-exchange am­
plitude is ae = (a2 -ao)/3. 

It is easy to write out in terms of these ampli­
tudes the contribution to the matrix elements M­
and M+ from the diagrams shown in Figs. 1 and 2. 
The contribution from the diagram of Fig. 1 to 
the matrix element M- has. the form 

[ ik1~a" -;- i (kts + kzs) f (2a0 + a2) I Mo 

(14a) 

and the contribution to the matrix element M+ is 

[ ik12 i (2az + a0) + i(kt3 + k2a)a2] M; 

+ ik12 f (a2 - a0) MQ. (14b) 

The contribution to M- from diagrams 2a and 
2b is 

2J (k12)l ~ a2 (2a0 + a2) M0 + f a2(a2 - a 0) M~J; 

that from diagrams 2c and 2d is 

[J (kd -;- J (k23)l [ + (2a0 + a2) a2M~ +i (a2 - a0) a2M~l 

(15a) 
and that from diagrams 2e and 2f is 

J (kts) +J (k23)J[+ (2a0 + a2) + (2a0 + az) Mo 

+ f (2a0 + a2) + (a2 -- a0 ) M+1+ + (a2 - a0) a2M; I. 
The contributions from the corresponding diagrams 
to M+ are 

2J (ktzH + (2az + a 0) a2M~ + + (az - a 0) a2Mo 

+ + (a2 - a 0) ~ (2a0 + az) Mo + f (az - a 0 ) 2 M;}, 

(J (kd + J (k23)){a2 i (2az + a 0) M; + Gz f (az - a 0) MQ"}, 

(15b) 

where M~ are the matrix elements at zero energy. 
The functions J ( kil) have been defined in (6). In 

our case (for equal masses) they are all equal to 

y-:1 xil arc cos xil ( 8 ) 
J (ku) = I (xu) = -- x2 1 -- x2 

n (t - x~l )'/, 9 il , 

(16) 

Collecting terms from (14) and (15) and recog­
nizing that the matrix elements can contain terms 
in the form ak~2 , we obtain 

M- = M0{1 + ik1zaz + i (k13 + kza} + [2a0 + az 

+ p (a2 - a 0)1 +2J (kd az t [2a0 + az + P (az-a0)1 

+ (J (k1s) + J(kza})l + (2a0 +az) +azl 

X + [2a0 + az + p (az - a 0) I 

+ + (a2 ~ a0) a2 pI + 01: _ ki2}; (17a) 

M+ = M;{l-;- iktzi (2a2 +a0 +2p-1 (a2 -a0)1 

+ i (kts + kzs) a2 !+ [J (kd +J (k2s)l 

X [t a2(2az + a0 + 2 p-1 (az - a0)) +a~) + 2J (kt2) 

X a2[ + (2az + ao) +f p-1 (a2 -:a0)1 

+ 2J(k12) + (az- a 0) 2 (1-2p-1) +01:+ k~2}, 

p = M;/M0. (17b) 

&J.uaring (17a) and (17b) and taking account of 
the fact that conservation of combined parity calls 
for real matrix elements M(i and M0, we find that 
the probabilities of the decays K+ - 271"+ + 71"- and 
K+ - 271"0 + 71"+ are respectively equal to 

dWH =! M;; 12 {1 + ~1 lk12 (k1s + kzs) + 2J (ktz) + J (kls) 

+ J (k2s) 1 --t- ~2 lk1sk23 + J (kd + J (k2s) 1 

+ ~3 [J (k1s) + J (kza) 1 + 01:_ k~2 }df, 

dW<+l = I M;, 12 { 1 + 'Yt lk12 (kls + k2s) + 2J (k12) 

+ J (kd + J (k2s)l + rz [klsk23 + J (kts). 

+ J (k2s)1 + rs2J (kd +a+ ki2} df; 

~1 = + a 2 (2a0 + Gz + p Ca2 - a 0) l, 

11 = f a2 [2a2 + a0 + 2 p-1 (az-ao) l' 

~z =~ [2a0 +az + p (a2 -a0)J2, 12 = 2a~, 

(18a) 

(18b) 

~s= f p (a2 - a0) 2 (2- p), rs =- f ~ (az - a0) 2(2 - p). 
(19) 

We note that (18a) and (18b) differ in structure 
from (5). In particular, the terms proportional to 
{33 and y 3 have root singularities for E13 = 0, E23 

= 0, and E12 = 0 respectively, and these singulari­
ties do not cancel. This is a consequence of the 
possibility of going from one channel to the other 
via charge exchange, and is a phenomenon of the 
same type as discussed in [3, 4]. 

Formulas (18) and (19) determine the depend­
ence of the probabilities of both decays on all the 
variables and make it possible, in principle, to de-
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termine the amplitudes a2 and a0 from their ex­
perimental analysis, in spite of the fact that the 
parameters a_ and a+ are not expressed in 
terms of the scattering amplitudes. 

It is most natural to regard dw<-> and dw<+> 
as a function of the orthogonal coordinates on a 
Dalitz diagram. It is convenient to choose as one 
of the variables x2 = k~2 /kfu - the ratio of the 
square of the relative momentum of like charged 
pions to its maximum value. k~2 is simply related 
to the customarily used variable €, the energy of 
the third pion: 

E = (Mk + 3f12 - 4k~2) I 2MK, 

k~ = -f (Mk- 2flMK- 3f12) = x2 • (20) 

For the second variable we choose z, the differ­
ence between the energies of like charged pions 
divided by the maximum value of this difference. 

For convenience in the experimental analysis, 
it is useful to have decay-probability formulas in­
tegrated over one of the variables. Integrating 
with respect to z, we obtain the so-called energy 
distribution 

dW(-> (x) = I Mo 12 {I + x 2 [~1F 1 (x) 

(21a) 

(21b) 

The functions F1(x), F2(x), F3(x), and J (x) 
are plotted in Fig. 6 and are written out in the 
Appendix. In the calculation of Fi(x) we have 
left out terms of the form a + bx2, since they enter 
either into the normalization or in a±. As can be 
seen from Fig. 6, the curves for F1, F2, and F3 
differ little from straight lines and it is therefore 
little likely that it will be possible to determine a0 

and a2 from an analysis of the energy distribution 
in the reaction K+ - 21r+ + 1r- only. 

It follows, however, from the same diagram that 
owing to the presence of the term 2K2.y3J (x) the 
energy distribution in the reaction K+ - 21r0 + 1r+ 

differs appreciably from a +x2, and can therefore 
be used to determine the charge-exchange ampli­
tude. The effect of this term on the energy distri­
bution is also anomalously exaggerated by the fact 
that p = %. and consequently 

ra =- 1: (a2- ao)2. 

It is clear from all the foregoing that the cor-

FIG. 6 

rections to the energy distribution, calculated in 
[s, 7], cannot be successful since they are reduced 
to a calculation of first-order diagrams (Fig. 1), 
which in many cases are almost completely can­
celled by the diagrams shown in Fig. 2. 

Integrating (18a) and (18b) with respect to x2, 

we obtain an analog of the angular distribution 

(22a) 

(22b) 

The functions cp 1(z), cp 2(z), cp 3(z), and cp 4(z) are 
shown in Fig. 7 and are given in the Appendix. A 
study of the dependence of dw<-> and dw<+> on z 
can serve as a means of determining a2 and a 0, 

but statistics on the order of 104 events are needed 
for this case. 

FIG. 7 

In conclusion, I am deeply grateful to L. D. 
Landau and I. T. Dyatlov for useful discussions. 
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APPENDIX 

z, 1. v3 x ( 1 s 2) 
f() \k (k +k) dz +2l(x)+F3 (x)=2l(x)+F3 (x)+\V1-x• --gx, 1 X = ) 12 1a · 23 4x•x V 1 _ xz 

~ l l 

2< 3 X 4 

2> 3 
X 4• 

(3-2x•)2 • 2x V3 (1-x2) 1 I 2 
=Fa(x)+ 16 }"3x"Vf=X2 arcsin 3 _ 2x• +8 3-2xj, 

22 J _ ~ arc sin X [ 1 + V3 X2 (3 _ 4x2) J + _1;.- (3 _ 4x2) 
-~ dz 9 xV1-x• :n: 6 

2< 3 X 4 

x2>2· 
!1 

F3 (x)- [I (xd +I (x2a)l = -
21 • 4x2xf1- x2 ~-~ 2 arccosx [ 1 + f3 x2 ( 4x2 _ 3)] +_!. (4x2 _ 3) 

!lxyt-x• 2;~; 3 

I (x) is given by Eq. (16) in the text, and z1,2 = + 2x Y 1 - x2• 

~ dx2 3 (V3 + z)2 1 + V3 z 1 1 -.!-
{jl1 (z) = k12 (k1a + k23) -vT=Z2 +<p3 (z) +<p4 (z) = <pa (z) +(jl4 (z) +~1, V arccos (}"3 ) +-1., (1 1 y 3z) x• 1-z• u 2(1-z•) 3+z u 

I a (y'3- z)2 VT 1 (1 2 -,/-3 5 2) - arccos -3 + 16 ~11 2 + y z- z , 
16f2(1-z•) r -z 

+ a (V3- z)2 y3 z -t + v3 z -1 v3 - arc cos , z > -16 V2(1- z2) (}"3- z) 16 2 ' 

1
--==1 =. r~ (2 - z2) - ::_ arcsh i lJ' z < V3 

3 V1-z• 3 2 a 2 
= {jla (z) +s • 2 ~~1--. ~~c; 

s z h r -z > r ._, 
-3 - ~~ arcs 2 , z -2 , 

2r1~z2 z 

z = (' I X I X dxz =--1- arccosz 
<p3 () ~( ( 13) + ( 23))x•v1-z• 3y3 V1-z2 

[ 1 + (v3-2z)~1 + v3 z) J 

1 
- 3l/3 I ;~;-arc cos z [ 1 + (V3 + 2z)(1- }"3 z) J , z < V23, 

V1-z• n 

5arccosz [ 1 - (V3+2z)(1-V3z)]-V3-2z 2 ----. VS 
y 1 _ z• 5n ' / 2 ' 

4 (z)=\I(x) dx2 =- 1 arccosz(l. 2z) __ z_. 
(jl J x2f1- z2 2V3 f1-z2 -t- a:~ 3y3' 

z>O. 
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