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We show that the set of n equations obtained from a phase shift analysis of scattered spin-0 
and spin-% particles with unknown polarization has (in a certain generalized sense) 2n so­
lutions including some that are nonunitary; furthermore, it is shown that this statement is 
true also for every subset of n equations of the set of 2n -1 equations obtained from a 
phase-shift analysis of scattered spin-zero particles. In both cases the "complete experi­
ment" involving 2n- 1 measurements can be replaced by a "necessary experiment" of 
just n + 1 measurements. 

1. MULTIPLICITY OF PHASE-SHIFT ANALYSIS 

A phase-shift analysis is a method of deriving a 
matrix from experimental data, such that exact 
unitarity is obtained by introducing phase shifts. 
The number of measurements needed at different 
angles and for a given energy is found to be finite 
if one restricts the number of states in which one 
wishes to determine the interaction. In other 
words, finite accuracy can be obtained for the ele­
ments of the scattering matrix as functions of the 
scattering angle only if one makes use of a finite 
parametrization. 

It is known [lJ that the results of a "complete 
experiment" are sufficient for a phase-shift analy­
sis. Many of the experiments, however, which en­
ter into such a complete set are difficult to per­
form. It is therefore of some importance to deter­
mine the minimum set of measurements necessary 
for a phase-shift analysis at a given energy, with 
the subsidiary condition that only the first n 
phases be considered nonvanishing. 

If the measurements are taken over a suffi­
ciently wide energy range, the number of meas­
urements at each energy may be decreased by 
making use of the causality condition. Additional 
information is obtained by studying the interfer­
ence between the interaction being measured and 
the Coulomb interaction or some other interaction, 
as calculated theoretically for a number of states. 
Although in principle interference will give any 
number of equations for the unique determination 
of the required phase shifts, experimental accu­
racy will not often allow the use of all or even 
nearly all of them. 

Thus in a phase-shift analysis one is not dealing 
with the complete problem of establishing the en­
tire scattering matrix, but the problem of finding 
for the first n phase shifts values that give the 
best fit to the experimental data, if one assumes 
all the other phase shifts negligibly small or 
given a priori. 

In order to obtain a finite number of sets of n 
phase shifts satisfying the experimental data 
equally well, one must have at least n independ­
ent equations. Such equations are obtained if one 
expands the experimental angular distributions 
in a series of Legendre polynomials and then 
equates coefficients of this expansion with the 
corresponding expression in terms of the phase 
shifts. 

In studying elastic scattering of spinless par­
ticles, a complete experiment requires a meas­
urement of the angular distribution of the scatter­
ing. In scattering of spin-% particles by spin-0 
particles, this experiment requires measurements 
of the differential cross section and the polariza­
tion of the recoil particles as a function of angle. 
In both cases the Legendre polynomial expansion 
of the theoretical and experimental angular dis­
tributions will lead to a set of equations of the 
form 

n 

~ Ci? sin 6k sin 61 cos (6k - 6t) =A,., (1) 
k,l=l 

where the cfH are constants, the ok are the phase 
shifts for the different states, the Ai are the ex­
pansion coefficients of the experimentally observed 
differential scattering cross section (divided by 
7t2 ) for an expansion in linearly independent func-
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tions of the scattering angle; in the first case 
i = 1, ... , 2n -1, while in the second i = 1, ... , n. 
For nonzero phase shifts we take here the states 
in the order S, P, D, ... in the first case, and in 
the order S1; 2• P 1; 2• P 312, D3;2 •••• in the second 
case. 

Before proceeding we must determine the num­
ber of solutions of a set of n such equations. It is 
shown in the Appendix that every set of n equa­
tions of the form of (1) has exactly 

(2) 

solutions such that -rr/2 :s: Re ok :s: rr/2. In special 
cases, when (1) is degenerate and may have an in­
finite number of solutions, as well as when one of 
the phase shifts passes through resonance, the 
number of solutions is defined as the number of 
solutions at almost all points of a certain region 
of the n-dimensional complex-valued space of the 
Ai. Then N = 2n everywhere. 

Thus the experimental data on just the angular 
distribution of scattering of spin-0 and spin-% 
particles will lead, if the polarization is unknown, 
to 2n different solutions. Among these are both 
unitary (real ok) and nonunitary solutions. This 
result is equally valid for the phase-shift analysis 
of elastic scattering of spinless particles if one 
wishes to find the n phase shifts by using only n 
of all the 2n -1 expansion coefficients of the an­
gular distribution. 

If some of the phase shifts are given and one 
wishes, as before, to determine only the first n, 
the number of solutions remains that given in (2). 
For in this case the left sides of Eq. (1) will con­
tain an additional finite or infinite number of terms 
of this form in which one of the phase shifts is 
given. Since the given phase shifts must vanish 
for zero energy, the result following from (A7) 
will not change. 

We remark that the number of solutions of the 
set of n equations with n unknowns is independ­
ent of the experimental accuracy with which the 
Ai are determined. On the other hand, the num­
ber of solutions admissible (with a given proba­
bility) for an overdetermined system depends 
strongly on this accuracy. 

2. EXAMPLES OF AMBIGUITY IN A PHASE 
SHIFT ANALYSIS 

We note first that all the solutions of (1) can 
be divided into two groups one of which is obtained 
from the other by the replacement ok - - ok. 
Further, as has been shown by Minami, [2] if one 
wants to obtain an even number of phase shifts 

for a spin Q-spin % scattering problem, one finds 
that the cg{ do not change when one interchanges 
states with the same total angular momentum but 
with opposite parity. Therefore the associated 
interchange of these phase shifts wil~ not change 
the differential cross section, and this fact thus 
separates all the solutions for this case into two 
additional classes. 

In spin-0-spin-% scattering, the equation for 
a single phase shift 

has only the two solutions 

The set of equations for two phase shifts, 
namely 

sin2 a + sin2 ~ = sin2 ao + sin2 ~o, 

(3) 

sin a sin~ cos (a - ~) = sin ao sin ~o cos (ao - ~o) (4) 

has the four solutions 

a1 = ao, ~1 = ~o; a2 = - a 0, ~2 = - ~o; 
a 3 = ~o, ~a = ao; a4 = - ~o, ~4 = - ao. 

For this case the Minami transformation and the 
change of sign exhaust all possibilities. 

The set of equations for three phase shifts, 
namely 

sin2 a + sin2 ~ + 2 sin2 r = sin2 ao + sin2 ~o + 2 sin2 ro, 

sin a sin~ cos (a - ~) + 2 sin a sin y cos (a- r) 

=sin a 0 sin ~0 cos (a0 - ~o) 

+ 2 sin ao sin ro cos (ao- ro), 

sin2 r + 2 sin~ sin r cos(~ -r) 
= sin2 ro + 2 sin ~0 sin ro cos (~o - ro) (5) 

should, according to the above, have eight solutions. 
In analyzing the scattering of 1r mesons by pro­

tons, only four solutions have been used heretofore; 
these are 

a1 = ao, ~1 = ~o, Y1 = ro; 

a2 = - ao, ~2 = - ~0, Y2 = - ro; 

aa = ao, ~3 = 8- ~o, r3 = 8 -yo, 

8 = arct sin 2 f3o + 2 sin 2 'Yo 
g cos 2 [30 + 2 cos 2 'Yo 

(6)* 

(the Fermi-Yang transformation); 

~4 =- ~3, 

There exist, however, four other solutions which 
have real phase shifts for sufficiently small (3 0 

and Yo [if a 0 « 1, f3o « 1, Yo « 1 and if aij 
» 3y0 (Yo + 2(30 )] and 

*arctg = tan -•. 
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Us,6 = arctg sin 2cto +sin 213o + 2 sin 2r0 
cos 2cto +cos 2130 + 2 cos 2 j 0 - 2 ao, 

(7) 

The corresponding values of {3 and y are given by 
expressions which are too complicated to be pre­
sented here, although they are easily obtained 
graphically. 

For larger {30 and Yo the last four solutions 
become nonunitary, i.e., the corresponding phase 
shifts become complex. At certain energies the 
complex values for these phase shifts may cross 
the real axis, and this leads to the additional am­
biguities in the phase-shift analysis for real phase 
shifts, as found by Igushkin. [3] 

To find the operator group of order 2n whose 
elements will transform a solution of a set of 
equations such as (1) into another is a problem 
which has not yet been solved in general. In the 
examples presented above the groups are Abelian, 
and are the direct product of n groups of two ele­
ments; this would seem to be true for the general 
case. 

3. "NECESSARY EXPERIMENT" 

We have seen that among the 2n solutions of 
the phase-shift analysis there are both unitary and 
nonunitary ones. The unitarity condition, written 
as a reality condition on the phase shifts, is not 
analytic and can therefore not be included in the 
integral treated in the Appendix in attempting to 
reduce the number of solutions. In order to choose 
a single physically admissible solution from among 
the 2n, one must use additional information; never­
theless, it is desirable to find the minimum amount 
of information necessary. It is then found that the 
number of measurements necessary to establish 
the scattering amplitudes is less than the number 
of measurements in the "complete experiment." 

The phase-shift analysis of spin-zero scatter­
ing can be carried through in two ways. In the 
first an electronic computer is used to minimize 
the sum of the weighted square deviations of the 
experimental differential cross sections at certain 
definite angles from the expressions for these 
cross sections in terms of the phase shifts. In 
this way one obtains many minima for the sums 
of the squares, some of which correspond to solu­
tions of the problem, while others arise from dif­
ferent sources entirely. To find the physical 
solution among them is often quite difficult even 
if the different minima have different depths. 

In the second method one starts by looking for 
the coefficients of the expansion in Legendre poly-

nomials (or some other linearly independent func­
tions of the cosine of the angle) of the differential 
cross section. This expansion is unique, and it is 
rapidly calculated since the problem is linear and 
its solution does not require successive approxi­
mations. One then finds that set of phase shifts 
which exactly solves the equations obtained by 
equating the above coefficients to their expres­
sions in terms of the phase shifts. 

But the greater the number of Ai coefficients, 
the lower as a rule the accuracy with which they 
can be found from given data. Therefore knowl­
edge of the higher n -1 among the 2n -1 quanti­
ties Ai determined by the n phase shifts, may 
be of no help whatsoever, since they are highly 
inaccurate. In other words, when the experimen­
tal errors are large some of Eqs. (1) are "almost 
missing." Such elimination of some of the condi­
tions may cause ambiguity in the analysis even if 
there is none in principle (in an "overcomplete 
experiment"). 

Instead of this it is best to find just the first 
(or largest) n coefficients, from which, as has 
been shown above, one can obtain 2n solutions 
for the phase shifts. One can then plot all the 
curves that remain when one discards the solu­
tions eliminated by the unitarity condition. 

If the electronic computer is programmed to 
choose the best real phase shifts, it is easy to 
differentiate between the unitary solutions and 
the nonunitary ones. Indeed, a real solution for 
the phase shifts has the property that the sum of 
the square deviations of the Ai from their ex­
pressions in terms of the phase shifts vanishes, 
while nonunitary solutions give more shallow 
minima. The real parts of solutions with small 
imaginary parts will in this sense be "almost 
solutions." The problem of finding all the solu­
tions is simplified by the fact that their total 
number is known. If the cross section is meas­
ured at n points, the first type of analysis will 
lead to a minimum sum of squares equal to zero 
for unitary solutions, but to a nonzero value for 
sets of real phase shifts close to nonunitary solu­
tions. The depth of the minimum may serve as 
an indication of how close the solution is to uni­
tarity. 

It turns out in practice that there are half as 
many different angular distribution curves as 
there are sets of phase shifts, since a simulta­
neous change of sign of all the phase shifts will 
not change the cross section. Then one can find 
an angle e0 where no pair of the 2n-t curves in­
tersects, and where in fact they are most sepa-
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rated. A sufficiently accurate measurement of 
the cross-section at this angle will eliminate all 
solutions except two, one of which is causal, while 
the other is not. In order to identify the correct 
one, one must make use of interference, for in­
stance with Coulomb scattering. If, further, one 
has information on the energy dependence of the 
solutions, one of the solutions, the noncausal one, 
can be eliminated with the aid of dispersion rela­
tions. 

In some special cases it may turn out that for 
a given energy region it is easier to distinguish 
between the 2n-i curves by measurements not at 
a single point, but at two or more points. 

The question of the number of solutions re­
maining after the "complete experiment" has 
been performed will be treated separately. 

In order to find all the parameters of an n­
parameter curve, one need measure it only at n 
points. It is assumed, of course, that n has al­
ready been chosen from considerations of the 
nature of the interaction, from analogy, or on the 
basis of previous experiments. Klepikov and 
Sokolov [4] (Chapter V) have shown that when a 
curve with n degrees of freedom is measured 
at exactly n points, the standard deviations of 
the coefficients are lower than if the measure­
ments had been performed at more points, but 
with the same total effort devoted to the meas­
urement. They also show how to find the best 
measurement points and how most efficiently to 
distribute the time devoted to measurements at 
these points for every specific case. It follows 
from such considerations that the phase-shift 
analysis of spinless particle scattering is best 
performed on the basis of cross-section meas­
urements at exactly n points. Subsequently one 
can eliminate the resulting ambiguity by a single 
added measurement at the best possible angle e0• 

If the measurements are performed at more than 
n points, each additional point can be used to re­
duce the ambiguity, but the effort devoted to the 
measurements at these points may turn out to be 
quite inefficiently expended. As for the work in­
volved in finding the best angle e0, it is usually 
considerably less than would be needed for addi­
tional measurements. 

The phase-shift analysis of scattering of spin­
% particles by spin-zero particles (or vice versa) 
can also be performed by the two methods dis­
cussed. In this case, however, the differential 
cross section at any angle is a linear function of 
the n coefficients Ai. It follows then that there 
is no additional point at which.knowledge of the 
cross section will decrease the ambiguity of the 

phase-shift analysis, whose multiplicity, as de­
scribed above, is 2n. But the same phase shifts 
determine the angular dependence of the polariza­
tion of the scattered spin-:Y2 particles. Therefore 
a polarization measurement at a single success­
fully chosen angle e0 can remove the ambiguity 
of the analysis. In general (when all the solu­
tions are unitary) one obtains 2n-i different 
polarization curves, since the polarization is not 
changed by simultaneously changing the signs of 
all the phase shifts and interchanging the even­
state phase shifts with the odd-state ones of the 
same total angular momentum (an interchange of 
the causal and noncausal solutions ) . If the polari­
zation measurements are impossible, it is impos­
sible to distinguish between four possible sets of 
phase shifts. 

Interference with the Coulomb interaction is an 
aid in distinguishing the solutions. If the energy 
dependence of the phase shifts is known, the dis­
persion relations and the low-energy dependence 
of the phase shifts can also be used. Indeed, for 
sufficiently low energies, the momentum depend­
ence of the phase shift is determined entirely by 
the orbital rather than the total angular momen­
tum; then oz ~ k2Z+i. 

As in the previous case, we can conclude that 
it is most useful to measure the differential cross 
section at n points and the polarization at one 
point. In principle we can choose any n of the 
2n - 1 equations for the expansion coefficients of 
the cross section and the polarization. However, 
the polarization measurements are usually much 
more laborious. Furthermore, one must bear in 
mind the fact that for the polarization these equa­
tions are of a different form. Instead of (1), one 
obtains 

n 

~ D~! sin ()k sin 6z sin (6k- 6z) = B;. (8) 

Therefore the number of solutions of the mixed 
system can be either more or less than 2n (but 
not more than 2 x 3n-1). 

We see that in both of the above cases, the 
"complete experiment" consisting of 2n -1 
measurements can be replaced by a "necessary 
experiment" of only n + 1 measurements. As has 
been stated, the n + 1 measurements can be chosen 
so that the information obtained on the phase shifts 
is greater than in the "complete experiment" in­
volving the same effort. 

The author thanks Professor Ya. A. Smorodin­
skii, S. N. Sokolov, and R. M. Ryndin for very use­
ful discussions. 
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APPENDIX 

NUMBER OF SOLUTIONS OF A PHASE-SHIFT 
ANALYSIS 

N. P. Klepikov and L.A. Alzenberg 

Equations (1), for which we want to know the 
number of solutions, can be written in the form 

n (i) {xkxl (1 + xkxt) aka/ (1 + akaz) } ft (x, a) = 2J Ckt 2 2 - 2 2 = 0, 
h,/=1 (1 + xk) (1 + Xz) (1 + ak) (1 + az) (A1) 

where Xk =tan 6k, i = 1, ... , n. Equation (A1) 
contains the experimentally determined values of 
the Ai in terms of one of the solutions xf-.1) = ak. 
It is clear that xfi> = - ak is also a solution. How­
ever Eqs. (1) or (A1) have also other solutions. 

When dealing with elastic scattering, only the 
real phase-shift (unitary) solutions of these equa­
tions are used. Nevertheless we find it convenient 
to consider the variables xk and parameters ak 
complex. Consider cn(x), the space of the com­
plex variables x =(xi, ... ,xn), and cn(a), the 
space of the complex variables a = ( ai, ... , an). 
Reducing the terms of each of the equations of 
(A1) to their common denominator, we obtain the 
set of equations 

F,. (x, a) = 0, (A2) 

(i = 1, ... , n) involving polynomials of degree 2n 
of n variables. Clearly the number of solutions 
N2 (counting multiplicities ) of (A2) is no less 
than the number of solutions Ni of (A1). From 
elimination theory (see, for instance, van der 
Waerden, [s] Sees. 77 and 7 8) it follows that N i 
5 N2 5 2n2, unless there exists a variable Xi 
such that 

(j =1, ... , h, h)d) (A3) 

is an identity in xi, ... , Xi-i• Xi+i• ... , xn. Here 
the Dj are the resultants of Eq. (A2) with respect 
to the Xi. Therefore N2 is always a finite number 
unless conditions (A3) are fulfilled. 

It is possible that these conditions are fulfilled 
for some a in en (a). Let us denote the set of 
such a by P. In particular, a= (ai, ... , an) is 
in P for spin-0-spin-% scattering, with n even, 
if aia2 = - 1, a 3a 4 = - 1, ... , an-i an = - 1. This 
is easily verified if (1) is written in the form 

n 

f 2J C~) II +cos 2 (bk- 61)- cos 2bk- cos 26zl =A;. 
k,t=l (A4) 

Under this condition I 6i- 62 I = 7r/2, ... , I Dn-i- on I 
= 1r/2, and all terms of the form cos 26i + cos 262, 
... , cos 26n-i + cos 26n vanish. According to 

Minami's theorem [2] this exhausts all combina­
tions of terms that do not contain phase differ­
ences. Equations (A4) still contain terms with all 
possible phase differences. We can therefore in­
troduce only a single continuous parameter. Ac­
cording to the mechanism described elsewhere [s] 

this case can occur if the vertex H is made coin­
cident with the origin 0, after which the mechan­
ism can be rotated through any angle about the 
origin, so that the vanishing of all terms with 
cosines of double phase shifts indicates that there 
is no relation of the mechanism to the coordinate 
system, or that only internal relations exist. 
Points in en (a ) at which ak = ± i for at least one 
value of k also present some difficulties on going 
from (A1) to (A2); in applications, however, these 
points are never needed. 

Let Q denote the set of those a in en( a) at 
which (A2) has at least one solution with at least 
one infinite coordinate. For real phase shifts 
this means that at least one of them is equal to 
1r I 2 (resonance ) . We shall call the points in 
en (a) - ( P + Q) ordinary. It is clear that the 
set of ordinary points is connected; in other words 
any two ordinary points can be connected by a con­
tinuous curve L consisting entirely of ordinary 
points (see, for instance, Fuks, [7] Sec. 12 ). 

Further, let R (a) be a bounded closed set of 
ordinary points, and let R (x) be the set of all 
solutions of (A1) corresponding to points in R (a). 
Then R (x) is also bounded. Indeed, if this were 
not the case, there would exist a sequence x<ll in 
R (x) converging to a point with at least one infi­
nite coordinate. Let x be a solution of (A1) for 
a = a<ll. Since R (a) has no intersection with P, 
the number of a<ll points is infinite. From the 
sequence a<ll we can choose a subsequence a<lm) 
converging to a point a <O) in R (a ) . Then going 
to the limit in m in the equations 

i = I, ... , n (A5) 

we would obtain a contradiction with the require­
ment that a <O> is not in Q. 

LevineC8J (see also CherneC9J) has obtained an 
integral representation for the number of solutions 
of the equations 

<p; (x) = A,., (A6) 

in a bounded region D under the following condi­
tions: (1) the cpi ( x) are merom orphic functions, 
(2) the number of solutions is finite, (3) there are 
no solutions on the boundary of D. 

Let a <1> and a <2> be two ordinary points in 
cn(a), and let L be a continuous curve connect-
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ing them. As has been shown above, the set of all 
solutions of (A1) with a in L is bounded in cn(x). 
There therefore exists a region D such that all 
these solutions are in its interior. Using Levine's 
integral representation, it is easily shown that the 
number of solutions of (A1) depends continuously 
on a in L. * It therefore follows that the number 
of such solutions is the same for all ordinary 
points. 

In order to include also points that are not or­
dinary, we make the following definition: the sys­
tem (A1) with a = a <O> in en (a) has N solutions 
in the generalized sense if there exists a neighbor­
hood S of a <O> such that for almost all points in S 
Eqs. (A2) have exactly N solutions in the usual 
sense. It is then clear that the number of solu­
tions in the generalized sense is the same for all 
points in en( a). 

In order to find this number N, we need only 
count the number of solutions of (A1) at any or­
dinary point of en( a). We choose the point 
a = ( 0, ... , 0 ) , and we show that for this point 
(A1) has only vanishing solutions. It will then 
follow that ( 0, ... , 0 ) is an ordinary point of 
cn(a). Indeed, for a1 = ... =an= 0 (zero en­
ergy) all the Ai of (1) vanish. This means that 
the product of the scattering cross section by the 
square of the wave number also vanishes in the 
limit. Then the product of the wave number and 
the scattering amplitude also vanishes. Since it 
i~. ~xpanded in orthogonal functions of the angle, 
e 1 k- 1 must also vanish for all k. It follows 
then that for zero energy the only solutions are 
x1 = tan 61 = 0, ... , xn = tan 6n = 0. 

All that remains is to count the number of 
solutions of (A1) for a = ( 0, ... ,0 ). As is well 
known, this number can be found in the following 
way. Let vi be the smallest number for which at 
least one of the partial derivatives of order vi 
of the function fi ( x, 0 ) does not vanish for 
x = ( 0, ... , 0 ) . Then 

*It is possible that this continuity can also be proved in a 
more elementary way. 

n 

N =II 'Vj. (A. 7) 
i=l 

It is easily verified that for (A1) vi = 2 for all i 
and therefore 

(AS) 

We note that this number is considerably below its 
upper bound N ::5; 2n obtained by elimination theory. 

We have thus shown that each of our phase-shift 
analysis problems has exactly 2n solutions includ­
ing, of course, the non unitary ones. 
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