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The effective cross section for resonance capture of slow neutrons is known to be symmet
ric if a compound nucleus is formed. It is shown that when compound nucleus formation and 
direct capture occur simultaneously, the effective cross section is not symmetric. 

1. INTRODUCTION 

ExPERIMENTAL and theoretical investigations 
of direct reactions have been at the center of in
terest for nuclear physics for many years. Until 
recently we were able to consider and describe 
the capture of slow neutrons only by means of 
statistical theory, based on the Bohr hypothesis 
of a "compound nucleus". But in studying the 
anomalies which appear in the y spectrum from 
( n, y) reactions, Lane and Lynn [i] came to the 
conclusion that a direct mechanism may also play 
an important role in the process of radiative cap
ture, at least for certain definite groups of nuclei. 

According to the statistical theory, the spectral 
distribution of the primary y rays appearing in an 
( n, y) reaction is proportional to the quantity 

E~ p (Ek- Ey), 

where Ey is the energy of the y ray, Ek is the 
binding energy of the neutron and p ( E ) is the 
average level density of the nucleus. 

In the case of the capture of slow neutrons, this 
function has a maximum in the region of 2 - 3 Mev 
and falls off monotonically toward higher energies. 
But experiment shows that there are also intensity 
maxima at higher energies in the y spectra, at 
least in the region of nuclei with mass numbers 
between 70 and 208. [2] As we approach the mass 
numbers 70 and 208, the peaks which are seen at 
high energies approach a value corresponding to 
the binding energy. 

Since the 2p and 3p neutron shells close near 
the mass numbers 70 and 208 respectively, the 
following explanation of this phenomenon seems 
very likely. In the field of the nuclear forces, the 
neutrons are subject to potential scattering; from 
the free s state they go directly, without compound 
nucleus formation, into a bound p state, emitting 
electric dipole radiation. As we approach the mass 

numbers 70 and 208, the p states correspond to 
lower and lower excitation, so that the energy of 
the emitted y rays increases. Apparently the 
probability of direct capture is higher the closer 
the p state is to a pure single particle state. 

On the basis of the dispersion theory of nuclear 
reactions, Lane and Lynn showed that such a direct 
capture is actually possible and compared the theo
retical values for the cross section with the avail
able experimental data; [3] despite the fact that 
only an order of magnitude comparison was pos
sible, because of the complexity of the phenomena, 
it seems to be entirely probable that for certain 
nuclei the process of direct neutron capture actu
ally exists. 

From the analysis of Lane and Lynn we see 
that, in those cases where the final state is an 
approximate single particle state, the channel re
gion, i.e., the region of configuration space outside 
the range of nuclear forces, makes a sizable con
tribution to the matrix element determining the 
cross section, as had already been pointed out by 
Thomas. [4] According to them, if the final state 
is an approximate single particle state, the prob
ability of a transition which leads to this state is 
increased, and thus it may be possible to explain 
the anomalies observed in the y spectra. 

From these remarks it follows that it would 
be extremely useful to carry out a direct experi
ment to settle unequivocably the question of the 
existence and role of the direct capture process. 
The interference that occurs between the direct 
and resonance capture processes makes it pos
sible, in principle, to set up such a direct experi
ment. Just as for the case of interference between 
resonance and potential scattering, here too one 
may expect that the partial effective cross section 
for neutron capture accompanied by y radiation 
of high energy goes through a minimum value in 
the region below an isolated resonance, and be-
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gins to increase rapidly only after one has passed 
the resonance. 

In the following we shall study the phenomena to 
be expected in the capture process as a result of 
the interference between direct and resonance 
capture. 

2. EFFECTIVE CROSS SECTION FOR (n, 'Y) 
REACTIONS 

We shall consider (n, 'Y) reactions with slow 
neutrons, where the orbital angular momentum 
of the neutron is zero, and assume that the total 
angular momentum of the system consisting of the 
neutron and the target nucleus takes on one defi
nite value: 

J = s +sn, 

where s is the spin of the target nucleus and Sn 
is the neutron spin. In this case the effective 
cross section for the ( n, 'Y) reaction is 

In the interior of the nucleus, S00 and the func
tion 1/Jc can be determined using the R -matrix 
theory. [5] If we are studying neutron capture in 
the region of an isolated resonance, we may as
sume that the matrix 

splits into two parts: 

R = J1, [Y!:h J + [1'\Y~cl 
1.;-;_1. E~c,- E E1.- E = R'oa + (4) 

where the matrix R 00 contains all resonances ex
cept for the one near Ei\ and is diagonal. 

The quantities 'Yi\c are the components of the 
vector for the reduced width of the level, 'Yi\• and 
are defined by the formula 

r~cc = (n 2/ 2MR)'f, \ X~.<p;dF. 
J 

l't 21+1 IS 2 
<Sny= Ji2 (2s + 1) (:C.sn + 1) fc I ' 

In this case the diagonal element of the matrix S 
(1) can be written in the form 

where Sfc is the corresponding element of the 
scattering matrix: 

S = (~)'/, k'/, (\f!r I H(I) I 'Pel (2) 
fc 9/i Y (21 + 1)'/, 

Here ( 1/Jf I H <1> 11/Jc ) is the reduced matrix element 
of the dipole operator between the free state 1/Jc 
and the bound state ¢f; ky is the wave vector of 
the emitted 'Y rays. 

To determine the reduced matrix element of 
the dipole operator we must calculate the contri
butions from the interior of the nucleus and from 
the channel region. Therefore the functions for 
the initial and final states must be given both in 
the interior of the nucleus and also in the channel 
region. The initial state wave function in the chan
nel is 

~Pc = rr'l• Uc (kr) - SccOc (kr)) <pc. r>R. (3) 

where v is the velocity and k the wave vector of 
the incident neutron (v = tik/M, where M is the 
reduced mass); <fJc is the so-called channel func
tion, which depends on all the internal coordinates 
of the nucleus and also contains the spin function 
of the neutron; I0 (kr) and 0 0 (kr) describe in
coming and outgoing waves, and have the asym
ptotic form: 

I c (kr) -+ e-ikr, Oc (kr) _,. e'"r; 

S00 is the diagonal element of the scattering 
matrix. 

(5) 

where the relation between the phase shift 6~ 
coming from the potential scattering and the phase 
shift 60 for an impenetrable sphere is given by 

-~io~ -2iB (1- R00 L*) e = e c cc c . 
1- R':/:Lc. 

We can then calculate the partial width 

2Pc"r~c r)c=- , 
. (1- R""S )2 -1- (R 00P f cc c ' cc c 

the total width 

and the level shift 

Ll· _ '\' P c (R'::,P cl- Sc (1 - R':/:Sc) 
A- ......:. (1- R':/:Sc)2 + (R':/:Pc)~ Yl.c· 

Sc and Pc denote the real and imaginary parts of 
the logarithmic derivative L0 calculated at a dis
tance corresponding to the radius of interaction: 

[ 
dOc (kr) 

Lc = kr d (kr) 1 l . O (kr) =c Sc -:- tPc. 
c ~ r=R. 

In the interior of the nucleus, the function 1/Jc has 
the form 

r<R. (6) 
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First we determine the contribution to the scat
tering matrix element from the interior region of 
the nucleus: 

(IJl, I H<l> I XA) 

EA +/';A- E- if A I 2 

(7) 

In this case the integral appearing in the reduced 
matrix element should be extended over the region 
r < R. 

The contribution from the channel region con
sists of two parts, resonant and nonresonant, as 
one sees from (5). The determination of the con
tribution from the resonance channel is done in a 
way analogous to that for the internal region. In 
the region of the channels, XA. corresponds to a 
continuation of the diverging wave 

X~ (r) =(X,_ (R) I Oc (kR)) Oc (kr), r>R. 

Similarly, the final state wave function 1/Jf in the 
channel region has the form 

• \ • 0 1 (k1r) 
'¢, (r) = ~ 'ljJtcptdF o, (ktRl <"Pr r>R, 

(8) 

(9) 

where cpf depends on all the coordinates of the 
total system, which is in a bound final state, ex
cept for the radial coordinate of the captured 
neutron. Of ( kfr) is the exponentially decreasing 
radial function for the neutron in the bound final 
state. Thus the contribution to the scattering ma
trix element from the resonance is 

sK = _ i 116n )•;, k~' ri,'~e -tsc ( ljl; I H<1> I X~) 
fc \ B (2J -f- !)''• EA +/';A- E- il\f 2 

8 rj,1c' br~,· 
= - ie _, c " (10) 

EA +/';A- E- il\ I 2 . 

The integration is of course extended over the re
gion r > R. 

We note that if the penetration factor is small 
( P c « 1), the photon width is real. One can see 
that the contribution from the resonance channel 
is significant if the final state function extends out 
strongly into the channel region. This is the case 
when the final state is a single particle state or 
contains a large single particle component. From 
this it follows that the transition probability is in
creased for a final state of single particle type. 
This fact would already explain the anomalies 
which appear in the y spectra. But there is still 
another contribution to the scattering matrix ele
ment Sfc• coming from the channel region. This 
contribution comes from the potential scattering, 
and consequently does not have resonance char
acter: 

k'/ • 
p _ (16 Jt)'/2 y' • (l) -2i&c _ p 

Stc- 9fiV ,1 ('¢t I H I Uc -e Oc] CJ>c) - D . 
(2J + 1) 2 (11) 

The effective cross section corresponding to 
this contribution may be called the cross section 
for "direct" capture. Thus the total scattering 
matrix element will be equal to 

s,, = sr. + s~ + s;, 
-ts' r;.'·r~1• -

= DP- ie ' ~-.,..--:::.:c___;;.!.~~~ 
EA+!'l.A-£-ifA/2 

. -~s~ r;:'~llri'; 
--te ~~~~~~~ 

EA + AA- E- if A I 2 ' 

and the effective cross section will be 

:n: 2J+1 { 
Gny = F 2 (2s + 1) \ DP 12 

+ A2 +2A Re(DP*e-iSc')-2xAim(Dp*e-iSc') }; 

x2 + 1 

(12) 

(13) 

Here we have introduced the quantity x = [ E 
-(EA.+ ~A,)/(rA,/2)], which gives the difference 
between the energy E and the resonance energy 
EA. + ~A.• measured in units of the halfwidth. 

Since the phase shift for scattering from an im
penetrable sphere is oc = - kR (where R is the 
nuclear radius), and the potential scattering phase 
shift 60 is of order oc, for the case of slow neu
trons the quantity e-io(: is approximately equal 
to unity. By studying the quantities appearing in 
formula (11), one can easily show that nP is al
most a pure imaginary quantity, so that 

Re (Dp•e -ts;) = 0, 

Using this, we get 

{ crP 1 + 2 Y crP I cr, (0) x } 
O'ny (x) = O'n (0) cr, (0) + xz + 1 ' 

·where 

c:; (O) = -~ 2J + 1 r),c(r;:'; + llf~i )2 

' k2 2 (2s + 1) q, 1 4 

is the effective resonance cross section at the 
resonance energy, and 

(14) 

(15) 

(16) 

is the effective cross section for "potential" or 
"direct" capture. Thus, by determining experi
mentally the energy dependence of the cross sec
tion, one can obtain information concerning the 
ratio of the cross sections. In the figure we show 
the behavior of any(x) for various values of K 

= (ap/ar(0)) 112• The difference in the energies 
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corresponding to the maximum and minimum ef
fective cross sections is equal to 

Emax •- Emtn = + f :1. Y a, (0)/crp + 4. (17) 

3. CONCLUSION 

From the arguments given we see that if there 
is actually a mechanism for direct reaction in 
(n, y) reactions then one manifestation of its ef
fects is that, in contrast to our present pictures, 
the cross section curve will not be symmetric. 
The experimental determination of the asymme
try and of the ratio ap/ar(O) seems to be pos
sible only for those nuclei in which there is an 
unoccupied state which is close to a single particle 
p state, and in which isolated resonances occur. 
It is also obvious that one can exhibit the asym
metry only if one measures the partial cross sec
tion any<c- f), i.e., not the effective cross sec
tion for the ( n, y) reaction as a whole but only 
that part which leads to just one final state or 
several final states with identical character. In 
practice this means that one selects one or sev-

eral intense peaks which appear in the high energy 
region of the y spectrum, and measures the cross 
section for those ( n, y) processes in which y 
quanta having the selected energy appear. 

Formula (14) shows that the detection of the 
asymmetry is to be expected only for those iso
lated resonances for which the ratio apIa r ( 0) is 
not too small: ap/ar(O);::;: 10-2• 
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