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The electron thermal conductivity produced in very pure superconductors by scattering of 
electron excitations on phonons is calculated on the basis of the microscopic theory of 
superconductivity. The absorption of sound in superconductors is also discussed. 

WE consider in this paper the electron thermal tation, E = .../ ~2 + .6,2( T), .6. ( T) -size of gap in 
conductivity of superconductors, due to the scat- the energy spectrum). 
tering of electrons on phonons. This interaction We now rewrite the kinetic equation in terms 
plays a major role in the investigation of the ther- of the new amplitudes (the left half is transformed 
mal conductivity of very pure semiconductors. In in accordance with [4]): 

addition, it makes a certain contribution also when 
the impurity concentration is not too high. [i] The 
final formula for the corresponding coefficient of 
thermal conductivity was given earlier. [2] We 
present here more detailed calculations and a 
comparison with experiment. We consider also 
the absorption of ultrasound in superconductors. 

1. THERMAL CONDUCTIVITY OF PURE SUPER­
CONDUCTORS 

The electron distribution function satisfies the 
kinetic equation 

:I ::x- ::x :: = ( ~~ t• (1. 1) 

where f is the electron distribution function, which 
we seek, as usual, in the form 

iJ'fo iJT f = {o + ae'P (e, Q) ax. 
In the electron-phonon interaction Hamiltonian 

H = ~ Vkk'atsaksbq + c .c. 
k, k', s 

we change over to new Fermi amplitudes that de­
scribe the electron excitations of the superconduc­
tor by making a canonical transformation, follow­
ing Bogolyubov [3]: 

ako = U~k. •t, - vka::!=k, -•t,. 

ak1 = uka-k, -'I• + vka;t •;, , 

u~=f(l +6/e), v~=+(l-6/8) 

( ~ -energy of ordinary electron reckoned from 
the Fermi surface, E -energy of electron exci-

816 

f2e•IT j_ ~ iJT =('IV 12 N (l + ~~·- fi2) 
0 e T ox .) 0 ee' 

X [«p (e', Q') -«p (e, Q)) e•'!Tfo (e) fo (e') 

>< {) (s'- e -liw) dq+ ~\VIWo(l + ~~·~t;)«p(e', Q') 

-«p (e, Q)) e•!Tfo (e) fo (s') {) (e- e' -liw) dq 

+~IVI2 No(t- 5~'~L\2)[«p(e', Q')-«p(e, Q)J 

X e'i"'IT fo (e) fo (e') {) (e' + e -liw)dq, 

No= (e'i"'/T -l)-1. (1.2) 

We recognize further that the phonon wave vec­
tor q is small compared with I p 1. We therefore 
expand cp(Q') in powers of q' = p-p* (p* is a 
vector directed in the p direction of length I p'l ) . 
This method of investigating the kinetic equation 
was first developed by Landau and Pomeranchuk. [sJ 
Integrating then over the angle J (the polar axis is 
chosen in the direction of the vector p), we obtain* 

!2 e•IT !-_ !!.=... = (' N IV 12 ~ (1 + ~· - L\2 ) 
0 T m j 0 I ~II ~· I ee' 

e<•+!iro)/T 
X [«p (e + liw, Q) -«p (e, Q)) T <•+!iw)fT 

(e'' + 1) (e + 1) 

m 2d d + i. N \VI2. ee' (I ~~'-L\2) 
X Pii q q «p ~ 0 I~ II~· I + ~ 

e•IT 
X [«p (s -liw, Q) -«p (s, Q)l •r <•-!iw>!T 

(e" + 1) (e + 1) 

x : q2 dqd«p + ~No \V\ 2 I~ ~~~'I 

X (1-~~·;.L\2 ) [«p {liw- s, Q) -«p (s, Q)l 

*The temperature is in energy units throughout. 
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\ z ee' ( ~!;'- ~2) + jNo lVI mTf1 1 + 88, 

eliw/T m a2<p 
X (e•IT + 1)(e<•-1iw)/T + 1) pq aQ• q,qiq2dq dqJ. (1.2') 

We make the approximate substitution 

ee' ( !;!;'- ~·) , 
IGIIG'l 1 ±~ = 2• 

as was done in the calculation of the phonon thermal 
conductivity, [G] and integrate both parts of (1.2') 

with respect to ~. In the right half we make at the 
same time the expansion [S] PxiP = (px/P )p =Po 
+ ax~. We then seek a solution in the form cp ( E, Q) 
= CfJt(Q) + CfJ2(E, Q), with CfJt » cp 2. Using d~ 
= E dE/~ to change over to integration with respect 
to E we obtain 
00 00 

~ f~e2axz V z2 - b2 dz = IV' \2T2 ~ e~·~x1 ~ [qJ2 (z + x, Q) 
b 0 

e•+x dz dcp 
-f{J2 (z, Q)J (e• + 1)(e•·t-x +1) 

oo x-b 

X e2 dzd<p +IV'I2P\ x2 dx \ [qJ2 (x-z,Q) 
(e2 +1)(ez-x+1) 2b C-1 t 

We use the notation E/T = z; tiw/T = x; ~/T = b; 
IV' 12 = I V2 l/q. 

The first integrals, which contain cp 2( E, Q ), 
make a zero contribution (to verify thi~ we make 
the substitutions z - z + x in the second integrand 
and z - x- z in the third). We then find 

(1.3) 

where a ( Q) depends on the angles that determine 
the direction of motion of the electron. 

We calculate next the heat flux from the formula 
Q = J EVxfdp. Taking (1.3) into account, we obtain 

co 

Q _ const -(r. [I f2 z ~~-2--2 ]2 aT 
- lll (T) T• a ••) j 0 e z y z - b dz ax . 

b 

(1.4) 

Calculation of the integrals in (1.4) leads ultimately 
to 

I aT _ const [ 2 co ]2 
x =- Q Tx -lll(T) T• b ~1 K2 (bs) , (1.5) 

where K 2(bs) is a Bessel function of imaginary 
argument, and 

00 

ct> (T) = 96 ~ (4) In (1 + e-b) + 2} s-5e-2bs (80b4s4 
S=l 

+ 160b3s' + 240b2s2 + 240bs + 120) 

00 

-In (eb + 1) ~ s-4e-2b•(64 b3s3 + 96b2s2 + 96bs + 48). 
S=l (1.6) 

In the temperature region close to Tc, where 
the contribution of the electron-phonon interaction 
to the heat flux is most significant, we obtain 

- ~ lll (Tc) rl ~ (-1)•+1 -bs 
X - Xn "' lll {T) 2 ..:::.J s• e 

S=l 

+ 2b In (1 + e-b)- bb' 12
, 

2(e + 1).J 
(1. 7) 

where Kn -thermal conductivity of the normal 
metal. The results obtained agree quite well with 
the experimental data. C7 • S] 

Expression (1.5) for K differs from that ob­
tained by Bardeen, Rickayzen, and Tewordt. [9] 

These authors used a direct variational method 
and trial functions for f that differed appreciably 
from the true function (1.3). 

2. ABSORPTION OF ULTRASOUND IN SUPER­
CONDUCTORS 

Let us examine the absorption of sound in super­
conductors when the frequency satisfies the condi­
tion w » 1/T ( w -frequency of sound, T -relax­
ation time for electron excitations; see below). 
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FIG. 1. Experimental points correspond to x - tin, [•] 
0 - indium, [•] solid curve - theoretical. 

Since the period of the sound wave is in this case 
less than the relaxation time, we can disregard 
the relaxation processes completely and consider 
only the absorption of sound quanta (the number 
of which is N » 1) by the electron excitations. 

Writing for the probability of absorption of a 
sound quantum 

W1 =~IV 12 [(ukuk' - VkVk•)2 Nf (I - f') 0 (e' - E -liw) 
k 

+ (ukvk' + Uk•Vk)2 N (I -f) (1 - f') 6 (e' + E -liw)] 

( f -number of electron excitations with energy E, 

N - number of phonons of frequency w ) and for 
the probability of the reverse process 

Wn- ~IV 12 [(ukuk' - VkVk•)2 (N + 1) 
k 

X(l -f) f'6 (e'- e -liw) 

+ (ukvk' + uk'Vk)2 (N + 1) ff'6 (e' + e -liw)l 

and substituting the expressions for Uk and Vk, 
we obtain for the absorption coefficient, which is 
proportional to the difference WI- w11, the ex­
pression 

r-~ \VI2 {(1 + ~s·; 1:1•) (f- f') 6 (e'- e -liw) 

+ ( 1- ~~· ~, 1:1•) (1 - f- f'} 6 (e' + E- nw)} 

p2 dp sin {lo d{lo d!p 
X 4n2Ji4 (2.1) 

From the momentum conservation law we obtain 
for the angle J between p and q, in the case of the 
scattering of electrons by phonons (p' = p + q) 

cos 'fr = (2m~' -2m~ + q2)/2pq. 

In the creation of excitation pairs (p + p' = q) we 
have 

cos 'fr =(-2m~' +2m~ + q2)/2pq. 

Taking these relations into account, we obtain 
upon integration over the angles (the polar axis is 
chosen in the direction of the vector q) and after 
changing to integration with respect to E 

co 

[ \' ( ££'- 1:12) , ee' r = const. } 1 - ~ (f - f ) 1 611 £' 1 de 
Ll 

}jw-Ll 

(nro) ~ 1 • •t• •• , .] ' D _ _ I _ £<o - , _ , ee . 
. T T ' 2 ( ee' ) (1 t - f) 1£ m· I de ' 

Ll 

(2.2) 

The function 

nw ;>2Ll 

nw < 2Ll. 

D (nw/T) has been introduced be-
cause creation of excitation pairs is possible only 
when nw 2:: 2~. 

We put approximately 

(2.3) 

and consider here frequencies that satisfy the con­
dition nw < T. We then obtain 

co x-b 
r = const·T[~ (f- f') dz +D (x) ~ (1- f- f') dz]; 

b b 

t = (ez + It1 • b = Ll/T, z = e/T, X = nw/T. 

Simple integration results in a general formula 
for the ratio of the ultrasound absorption coeffi­
cients in the normal and superconducting states [1] 

rslrn = {x -In [(eb+x + 1) (eb+ 1)-1 ] +D (x) [2b- X 

+2ln [(ex-b + 1) (eb -1)-111}/ln [(ex+ 1)/2]. (2.4) 

When x « 1 we have YsiYn = 2/(eb + 1), which 
agrees with the result obtained by Bardeen, Cooper, 
and Schrieffer [10] and experimentally confirmed by 
Morse and Bohm. [ll] 

3. ABSORPTION OF LONG-WAVE SOUND 

We now investigate the absorption of sound in 
superconductors for the case when w « 1/T; for 
electron excitations we have according to [11] 

T ..... 10-7 - 10-6 sec. We consider first the ab­
sorption of sound by electron excitations, which 
makes the main contribution to this absorption. 
We consider the sound field as a factor that de­
forms the lattice. The irreversibility of the de­
formation process indeed leads to the absorption 
of sound energy. The problem thus reduces to a 
solution of the corresponding kinetic equation and 
subsequent calculation of the dissipation function, 
which determines the absorption of the sound wave. 

We write the kinetic equation 

- ( ~~ )s = ~ \V 12 (ukuk' - VkVk•)2 {[f' (l - f) (N + 1) 
q 

- f (1 - f') Nl 6 (e' - e -liw) + [f' (1 -f) N 

- f (1 - f') (N + 1)1 6 (e- e' -liw)} 
• + IV 12 (ukvk' + uk'vk)1 [N (1 - f) (I - f') 

- (N + 1) ff'] 6 (e' + e -liw); (3.1) 
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where N is the number of phonons of frequency w. 
When the sound field is turned on, the electron 

is in a lattice with a somewhat modified constant, 
so that its momentum becomes dependent on the 
deformation tensor. [ 12 ] Therefore 

( at) at 6 at s = a8 s Btk (k) Utk 

(uik -deformation tensor; Eik(k) -tensor de­
pendent on the direction of k). We assume that 
l » A ( l -mean free path, A -wavelength of 
sound). We can then neglect the electric defor­
mation fields. [13] 

We seek the distribution function, as usual, in 
the form f = f0 + g ( E, &2 ) , where f0 = ( e E /T + 1 ) - 1 

and g ( €, &2 ) depends on the energy of the electron 
excitation and on the angles that determine its di­
rection of motion. We expand g ( E, &2) in Legendre 
polynomials and confine ourselves as usual to the 
first term of the expansion, i.e., we assume g ( €, &2) 
= g (E) PxiP (p -electron momentum, Px- its 
projection on the direction of the sound), g (E) 
being sought in the form 

ato ( ) 6 g(e) = Te<p 8 rn· 
Then (3.1) is rewritten as 

f2e•!Till e· u = \ N I Vl2 (1 + 66'-~2) o e , k tk j o ee' 

[ , P~ Px J f ' •'IT ( , 1i ) d X <p(e)y-<p(e)p- 0{ 0e {) e -e- w q 

+~No IV12(1 + 66'~ll·)[ <p (e') :: 

- <p (e) :x J fof~e•1T{) (e- e' -7iro) dq 

' 
+ ~NoiVI2 (1- 66';;,'~2)[<p (e') :: 

-<p (e) P;]tof~en"'fT{)(e+e'-1ico)dq. (3.2) 

For the momentum projection averaged over the 
azimuth cp we have qx = 2rr(px/p)q cos J. (J.­
angle between p and q; the polar axis is chosen in 
the direction of the vector p), with cos J. ~ - q/2p. 
We integrate further over the angle J. and put ap­
proximately 

( 66'- ll2) ee' 
1 ±~ TITiFT=2. 

We seek cp(€) in the form cp(€) ='Po+ cpd€), 
with cp 0 » cp 1 (cp 0 = const). Introducing further 
the variables z = E/T, b = ~/T, x = tiw/T and in­
tegrating with respect to z and with respect to the 
angles in the momentum space of the electrons, we 
obtain 

00 00 00 

~ ez . d dQ I V'21 To ~ 2.x4 dx ~ dz dQq>o ---B·kU·k Z - --
(e2 + 1)ll ' ' - e" -1 (eZ + 1) (e-•-x + f) 

b 0 b 

00 00 

+IV' I! T5 \ x'dx I e2 dzdQ (jlo. 
2 l e" -1 .) {e2 + 1) (e" z + 1) 

2b b 

IV' 12 = IVI2Jq. 
We see therefore that the sought function cp has 

the form 

const 1 
<p = T> (eb + 1) ci> (T) 

(3.3) 

FQr .P(T) see (1.6). 
The impurities do not play any role in this proc­

ess. They cause elastic scattering of the electrons, 
and their effect can be accounted for by adding a 
term (f-f0 )/T to (3.1). This term, however, 
drops out in the integration over the angles in the 
momentum space of the electrons, a natural fact, 
for in this case elastic scattering cannot lead to 
establishment of equilibrium. 

We now find the dissipation function, which de­
termines the absorption of the sound energy. The 
entropy of a gas of electron excitations is 

S = ~{(fk ~ 1) In (1- {k)- fk In fk}, 
k 

which leads to the following expression for the dis­
sipation function: 

. ~. g 
W = TS = - T L.J {k (1 - fo) to' 

k 

(3.4) 

Substituting fk from (3.1) and then integrating with 
respect to E and the angles in the phonon momen­
tum space, we obtain, with account of approxima­
tion (2.3), 

00 00 

W = ~ x2 dx ~ dz<p (z) [<p (z + x. Q')- <p (z, Q)] 

X o b e•+x + r x2 dx r dz <p (z) 
<ex -1) (e2 + 1) (ez+x + 1) ~ J 

o b+x 
<z 

X [<p (z- X, Q') - <p (z, Q)J (e" -1) (ez + 1) (ez x + 1) 

oo x-b 

- ~ ~ x2 dx ~ <p (z) [<p (x- z, Q') 
2b b 

( Q)J exdz 
-<p Z, (e2 +1) (e" 2 +1) {e"-1) 

We therefore find 

W _ const 1 (3.5) 
- T" (eb + 1)2 <D (T) 

This formula was first derived in [2] ; it is seen 
from (3.5) that W is a universal temperature func­
tion. Consequently, the coefficient of absorption 
of long-wave sound by electron excitations, which 
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FIG. 2 

is proportional to W, is given by 
4\D (T cl 

Yse=Yne.(i+i)2 \D(T)' (3.6) 

where 'Yne = const/T5 is the coefficient of absorp­
tion of sound in the normal metal [ia]; ci> ( T) is 
given by (1.6) (see Fig. 2). 

We determine similarly the absorption of sound 
energy by phonons. The sound field changes the 
phonon frequency to w' = w ( 1 + O!iv Uiv); here O!iv 
is a tensor dependent on the direction of the phonon 
wave vector and uiv the deformation tensor. The 
kinetic equation for the distribution function of pho­
nons interacting with electrons in a superconductor 
in a sound field has the form 

- N~en"'fT n; atvUtv = ~ IV 12 {2 (ukuk' - VkVk'} 2 

X [f' {1 -f) (N + 1) - Nf (1 - f')l c'l (e' - e- 1iw) 

+ (UkVk' + Uk'Vk) 2 [(N + 1) ff' 
- N (1 -f) (1 - f')] c'l (e' + e - 1iw)} p2dp dcostl'd<p. 

(3. 7) 

The perturbation of the phonon distribution 
function R = N- N0 can be determined from this 
equation by a method similar to that used in [G], 

and has the form 

R = - N~e~r (x)!T; 

1 const {r e• dz 
,-=-x- j (ez+1)(ez+x+1) 

b 

x-b 

+ D (x) ~ (ez + 1) ~:x z + 1)} 
b 

( {0, X< 2b) 
D (x) = 1, X> 2b . 

For the dissipation function of the phonon gas we 
have 

W ph=- T"jJRNINo (No + 1). 
q 

Evaluation of this function yields (see Fig. 3) 

rsp/Ynp 

20 

15 

10 

5 

1 L__J__...[_-L----'"--

0,'2 

FIG. 3 

YspiYnp = F (T)IF (Tc); 

F (T) = - 8 {b' +b3) (eb - 1)-1 - 6~ {3) (eb + 1) 
00 

S=1 

+6~ {4) (eb - 1)- (eb - 1) :"2J s-4e-2b• (8b3s3 + 12b2s2 

S=1 

+ 12bs + 6) + 32ba (e2b - 1)-1 
00 00 

-a4 :"2J {se-2bs Ei [- s (2b- a)]}+ 6 h s-3e-2bs; 

S=1 S=l 

a~2b -0.16; 
00 

~ (s) = :"2J n-•; ~ (3) = 1.202; ~ (4) = 1.082. (3.8) 
11=1 

Here 'Ysp and 'Ynp are the coefficients of absorption 
of sound by phonons in the superconducting and nor­
mal states. 'Ysp is also a universal function of the 
temperature. The total absorption coefficient is 

'Ys = 'Yse + 'Ysp· 
The absorption of sound by phonons increases 

with decreasing temperature because the phonon 
mean free path is increased by the deduction in 
the number of electron excitations. This absorp­
tion mechanism is significant at temperatures not 
too close to Tc. 
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ERRATA 

Vol No Author page col line Reads Should read 

13 2 Gofman and Nemets 333 r Figure Ordinates of angular distributions for Si, Al, 
and C should be doubled. 

13 2 Wang et al. 473 r 2nd Eq. 
e2[ 2 2m e2[ 2 ( 2m 55' 

cr._. =43 w2 (ln --0.798) crl'- = 9n• w• In m;-- 48) . n ml'-

473 r 3rd Eq. (e2[ 2/4n3) w2 ;;;;. ••• (e2f2/9n3) w2 ;;;;. ••• 

473 r 17 242 Bev 292 Bev 

14 1 Ivanter 178 r 9 1/73 1.58 X 10--6 

14 1 Laperashvili and 
Matinyan 196 r 4 statistical static 

14 2 Ustinova 418 Eq. (10) 1 
- [~ (3cos2 8 -1) ... r [- 4 (3cos~ 8 -1) ... 

4th line 

14 3 Charakhchyan et al. 533 Table II, col. 6 1.9 0.9 
line 1 

14 3 Malakhov 550 The statement in the first two phrases following Eq. (5) are in 
error. Equation (5) is meaningful only when s is not too large 
compared with the threshold for inelastic processes. The last 
phrase of the abstract is therefore also in error. 

14 3 Kozhushner and 
Shabalin 677 ff The right half of Eq. (7) should be multiplied by 2. Conse-

quently, the expressions for the cross sections of processes 
(1) and (2) should be doubled. 

14 4 Nezlin 725 r Fig. 6 is upside down, and the description "upward" in its 
caption should be "downward." 

14 4 Ge'ilikman and 
... [ b2 ~1 Kz (bs) r ... [ b2 ~1(-1) 5HK2(bs) r Kresin 817 r Eq. (1.5) 

817 r Eq. (1.6) <l>(T)= ... <l> (T) :::::o ••• 

818 1 Fig. 6, Y.s (T) ><s (T) 

ordinate axis ><n (Tc) ><n (T) 

14 4 Ritus 918 r 4 from bottom two or three 2.3 

14 5 Yurasov and 
Sirotenko 971 Eq. (3) 1 < d/2 < 2 1 < d/r < 2 

14 5 Shapiro 1154 1 Table 2306 23.6 
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