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A quantum mechanical analysis is given for the complex dielectric tensor of an electron 
plasma in a magnetic field; the orbital motion of the electrons in the magnetic field is 
quantized in this treatment. The transition to the classical and quasi-classical cases is 
studied and the relation to well-known results is established. [i,a, 4J The limiting quantum 
case is investigated. An expression is derived for the anti-Hermitian part of the tensor, 
which is responsible for dissipation. The magnetic-field dependence of the interaction 
screening range is discussed. 

l. The dielectric tensor of an electron plasma 

A0 = {- Hy, 0, 0} is the vector potential of the 
uniform magnetic field 

' e [ , (' e )] ;Jt' = - 2f-1c A ' P - c Ao +' 

(2) 

(3) * 

with a Maxwellian distribution function in a uni­
form magnetic field has been given by Sitenko and 
Stepanov[1J on the basis of classical kinetic theory. 
In strong magnetic fields, however, the energy of a 
Larmor quantum is of the same order as or larger 
than that of the random motion of the particles and 
the classical theory no longer applies because the 
orbital electron motion must be quantized. 

and A' is the vector potential of the self-consist­
ent field. We shall use the gauge: 

<p == 0, div (-A') = 4nc Sp { p' (r') 6 (r- r')}. (4) 

The vector E = - ( 1/ c ) A' obeys the equation 

4n a ('. 1 a ) rot rot E = - (;27ft J + 4n at E ' (5) t 

In the present paper we derive the quantum­
mechanical dielectric tensor Eij ( w, q), which 
plays a central role in investigations of the elec­
tromagnetic properties of plasma; the correlation 
energy of the particles is expressed in terms of 
this tensor. As has recently been shown by SilinPJ where 
this tensor also plays an important role in shielding 
of the Coulomb field of particles in the collision in­
tegral, so that the formulation of the quantum collision 
integral for Coulomb particles in a magnetic field 
also depends on the quantum-mechanical tensor 
Eij ( w, q). 

In computing Eij(W, q) we shall use the linear, 
self-consistent field approximation. The orbital 
electron motion in the magnetic field is quantized 
by describing the particle motion with a single­
particle statistical operator p, whose equation of 
motion assumes the following form in the present 
approximation: 

(1) 

where [A, B]_ and [A, B] + are the commutators 
and anticommutators for the operators A and B; 
Po is the ground state operator, p' is the per­
turbed value of p (p =Po + p' ), which is a linear 
functional of the self-consistent field 

(6) 

2. To form Eij(w,q) we use Eq. (1) to express 
p' in terms of A and then find the current-density 
vector (6); Eq. (5) can then be used to find Eij(w,q) 
directly. This calculation is carried out conven­
iently in the representation based on the eigenfunc­
tions of the operator 3c0 (Landau representation): 

ieo I kx, kz, n> = Ekz. n I kx, kz, n), 

Ek2 , n == Ev = nf1 (n + 1/2) + 1i2k~/2p., 

Q = I e I HI p.c. 

*[A',(p-=-Ao)] =A' X (p-=- A0). 
c c 

hot= curl. 

(7) 

(8) 
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Assuming that p' "' E "' exp (iwt - iq · r ), using 
(1) we find the following expression for the matrix 
elements of the operator p 

<'I AI)- f ()" ..L fo{V')-fo(v) (v'l~'i'v). 
V p V -10 V Uvv' 1 E ,-£ -hw-i!J. Q~ 

v v 

From (3) and (8) we have 

<kx. k •• n lie' 1 kx + qx. k. + qz, n'> 

= (e I ftC) Knn' (qx, q) A' (qx' qz); 

K""' (qx, q) == 11z {<n I r-tQ ly, Jl+ In'), 

(9) 

<n I IPu· J\ I n'>, <n I (2M.+ nq.l l1 n')}. (10) 

Here, .f = exp { a 2cd:a/ay} and A' ( CJx, qz) is the 
Fourier transform of the self-consistent vector 
potential. A 

The operator J is unitary: 

(11) 
A 

where I is the unit operator. 
To compute the current density we must write 

the matrix elements for the kinetic momentum 
operator 

(k~, k~, n'l p- eAo I c I kx' k2 , n) = 1'1 (k2 - k~ + q) 

X b (kx - k~ + qx) 

3. We now consider limiting cases of Eq. (14). 
First we show that (14) yields the classical result 
of Sitenko and Stepanov. [1] We assume that f0 is 
a Maxwellian distribution function and expand the 
difference 

fo (Ek2+q2 , n•) - fo (Ek2 , n) = - fo (Ek2 , n) (Ek2 +-q2 , n'- Ek2 , n) 

(17) 
in terms of qz and n' - n. 

Since the operator .f is unitary (11), we have 

{N0 (2n)2 f16a2)-1 ~ ~ dkzfo (kz, n) (K~n·)I(Kn•n)/ =btl· (18) 
n'n 

The components of the vectors Knn' are replaced 
by their asymptotic expressions for large n, cor­
responding to the transition to the classical limit 
(n- oo, ti- 0, nti is finite): 

lim (n I J In') = lim exp (- a.Vx I 4) (n'! n!)-'1' 

X (rxqx I V2)"'-nL~'-n (rxVx I 2) 

= (-1)"'-nln•-n (rxqx V n' + n + 1), (19) 

for n' ~ n. Here LB:'-n(x) is the Laguerre poly­
nomial and Jn'-n(x) is the Bessel function of order 
(n'-n). 

Using the recurrence formulas for the Bessel 
functions we have 

{ <n' I 1-LQY In), <n' I Pu In), <n' I M. In>}. (12) (n l!y, )] In') = Y2n nJ n'-n (aqx V n' + n + 1)' 
+ qx Vn+n' + 1 

Using (6) and (9)- (12) we obtain from (5) 
(n IIPu• )]+In')= i~ ffnl~·-n (rxqx V n' + n + 1 ), 

3 

h {n2 (x1x1- b1i) + Bti {w, q)} £ 1 = 0, (13) (likz + liq. I 2) (n I J In') = lik.J n'-n (aqx Y n' + n + 1 ); (20) 
i=l 

n = cq I w, x1 = q;l q; 

Btj (w, q) =btl + 4Jt<r;J {w, q) I iw, (14) 
in which we have taken account of the fact that 
[y, JL = 0 in the classical limit. Converting to 
the variables 

(lik.)2 I 2f16 = y2 , nliQ 1 e = t 2 , s = V3a I flo· 

(K• ) (K ) J!37;; (w - nQ) I (sq.) = Zn, A. = Jf2Ts sqx I Q, w~ = 4ne2 N 0 I 11• 
nn' I n'n jt 

(15) 

where No is the mean particle-number density: 

No = (2n2aZ) ~ ~ dk.fo (Ek2 , n)· 
n 

The tensor Eij(w,q) [and consequently O'ij(w,q)] 
satisfies the well-known Onsager symmetry rela­
tion 

e11 (q, H, w) = Bft (- q, - H, w) 
(16) 

(the number a indicates how many times y ap­
pears in the indices i and j). 

we have from (14) in the classical limit 

X (D (n I 1.; ialaA., y) J n (A.t)), 

X (D (niA., - ia I at.., y) J n (A.t))I; 

D (n I A., ialf1A., y) == {n I A., ia I at.., y}, (21) 

which coincides with Eq. (11) of Sitenko and Stepa­
nov. [1] 

We now find the quasi-classical limit for Eij 
for a plasma with a Fermi distribution function. 
This case is of importance in the plasma model 
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of a metal. For complete degeneracy we have 

fo (kz + Qz, n') - fo (kz, n) 

= - l> [n2k; I 2[L- nQ (no- n)l [Ekz+q. n' - Ekz. n]. 

(22) 

and, from Eq. (11), 

h2k2 
(2n:2 fLNoa2)-1 ~ ~ dk2 l> [ 'L.~J.z - n Q (no - n')] 

(23) 

where fiQn0 = Eo - nQ/2, Eo is the Fermi energy 
(more precisely, the chemical potential). 

Using the asymptotic forms of (19) and (20) and 
assuming that n = n0 sin2 J. we have from Eq. (14) 

e .. w - () .. - 3w~ oo C sin-& d& 
11 ( ' Qx, Qz) - tJ 2w 2] ~ v0q2 cos{}+ nQ- co 

n=-ooo 

x (o (~, ~~ ,costt)Jn(x sin tt))1 

x(o(-i-•- ~~, costt)Jn(xsintt))( (24) 

We note that two components of Eq. (15) for 
Uij(w,q) have been obtained by Mattis and Dres­
selhaus [3] for a purely transverse field ( axx and 
Uzz ). This equation has also been obtained in the 
quasi-classical limit being considered here by 
Cohen, Harrison, and Harrison. C4J In both of these 
papers Im w = 1/T was assumed to be known and 
independent of magnetic field, and the frequency w 
was identified with the frequency of the collisions 
between the electrons and the impurities or the 
lattice. There is reason to believe that these as­
sumptions do not apply in the quantum region 
(strong magnetic fields) or in the short-wave re­
gion, where spatial dispersion is important. 

We now consider the limiting quantum case cor­
responding to small quantum numbers n or strong 
magnetic fields. In this case n = n' = 0 if n0 < 1; 
this means that all the particles are in the n = 0 
level and that all n > 0 levels are empty. For 
these magnetic field strengths 

eii(ro, qx, q.) = (1-ro~lro2) l>ii 

- exp (- ot2q; 1 2) ro~w-2 (2n:2ot2f1N 0)-1 

l . ~ dk fo (kz + qz) -· fo (k2 ) 
X Ill z 2 2 

A->0 h (q2 + 2k2 q2 ) / 2[L- hw- i/'J.. 

X (D (0, i1iq2 , 21ik2 + nq2 )\ (D (0, -inq2 , 21ik2 + nq))r 

(25) 

It follows from this formula that the tensor Eij re­
duces to a scalar and there is no spatial dispersion 

for waves characterized by qz = 0 and Cix "" 0, i.e., 
waves that propagate at right angles to the mag­
netic field: 

e1i (w) = (I - ro~ I ro2 ) l>ii' (26) 

This result follows from the fact that a strong mag­
netic field inhibits particle motion perpendicular 
to the field. This feature does not apply for waves 
characterized by qz ?" 0. 

The quantity n0 increases as the magnetic field 
is reduced, and as soon as n0 2: 1 motion across 
the magnetic field develops discontinuously. When 
1 ::s n0 < 2 [for waves that propagate across the 
field ( Clx ?" 0, qz = 0 ) ] the expression for E ij be­
comes 

Bxx = I - :~ {I- w• ~ Q• exp (- ct~~)}, 

(27) 

Furthermore, Ezj = 0 when j "" z. 
As the magnetic field is reduced, n0 increases 

still further and when n0 = m (m is a whole num­
ber) the tensor Eij ( w, q) changes discontinuously 
and a new level becomes populated. 

4. The investigation of the dissipative proper­
ties of the plasma is based on the anti-Hermitian 
part of the tensor E ij ( w, q) which we denote by 
Efj ( w, q) below. Using the general formulas (14) 
and (15) we find 

- f o (k., n)} ( K:n•); (Kn•n)Jl> [Ek.+q2 , n'- Ek2 , n- nro ]. 

(28) 

For waves propagating across the magnetic 
field (qz = 0) 

(29) 

Using the asymptotic expressions for the vectors 
Knn' as n- oo and assuming a Maxwellian distri­
bution function we have from Eq. (29) 
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2 00 

e;i(w, q) = 4V;t =~ ~ dt ·te-1'(D (~,~, i a~ , o)J.,1n (/..t)), 
0 

(30) 

while for a degenerate Fermi distribution we have 

2 "'2 
• 3n:w0 \ ( ( w iiJ ) . ) eii(w, q) = 2(J)Q J D xQ' ax, cos-& Jn(xsm'fr) 1 

0 

rn "' 7tF the potential oscillates and the shielding 
differs considerably from Debye shielding, depend­
ing on the magnetic field if such a field is present. 

The oscillations of the potential of a point charge 
in a plasma are associated with the diffraction of 
the electron de Broglie waves in the inhomogenous 
potential produced by the point charge; this effect 
does not appear in the classical limit. 

In strong magnetic fields the Larmor radius 
rL plays the role of the Debye radius. The in­
equality rL < 7tF holds for Fermi statistics with 
n0 ~ 1 and we obtain the following expression for 
the potential cp (cylindrical coordinates ) : 

00 -too 
(31) <p(p, z) = ~ ~ dqlq_Jo (pqJ.) ~ dq/q,z 

where x = qxv0 /n. We may note that E{j in Eq. (31) 
approaches zero when the magnetic field is switched 
off; this follows from the asymptotic behavior of the 
Bessel functions. 

The results of the present work can be easily 
extended to the case of several particle species 
subjected to Coulomb interactions in a fixed mag­
netic field. 

5. We discuss briefly the potential cp of a 
charge e moving with velocity v0 in a medium 
for which Eij ( w, q) is given. The expression for 
cp is 

<p (r, t) = (2nt3 

X ~ 4ne dq dweiqr-iwt (qiqieii (w, q))-1 {) (w- qvo). (32) 

The denominator in (32) is the longitudina:l dielec­
tric constant E (w,q): 

q2e ( w, q) = qiqieii ( w, q), 

which, by (14), is 

(33) 

(34) 

In the classical limit and with v0 = 0 we use 
(32) and (34) to find the isotropic exponential de­
cay of potential with distance ( Debye shielding 
with radius rn). This case corresponds to the 
inequality rn » 7tF (7tF is the de Broglie wave­
length of an electron at the Fermi surface). When 

0 --oo 

where qi = qk + q~ while E ( w, q) is computed 
in [5]. Analysis of this formula shows that when 
n0 ~ 1 the anisotropic shielding is important only 
in a region of space characterized by dimension 
a. Electromagnetic wave propagation can be stud­
ied in the quantum case by means of the disper­
sion equation which follows from (13); the deter­
minant of the system is set equal to zero. 
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