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An expression for the momentum increment of a high-energy particle (compared with the 
particles comprising the bulk of a plasma) due to passage of a hydro~agnetic shock wave 
is derived and discussed. 

WE consider a plane hydromagnetic shock wave 
propagating in a direction perpendicular to a mag
netic field (perpendicular shock wave ) . The veloc
ity of the front relative to the medium 1 ahead of 
the front is v1, and that relative to medium 2 be
hind the front is v2• Let a ci:J.arged particle of 
velocity v » v 1 be incident from medium 1 on 
the front of the shock wave. The particle-veloc-
ity component parallel to the magnetic field will 
not change on passing through the front. We there
fore choose a system of coordinates in which the 
particle moves in a plane perpendicular to the 
magnetic field. We assume that the Larmor ra
dius of the particle is much greater than the width 
of the front and that this width can be neglected. 
Moving alternately between regions 1 and 2, the 
particle will describe circular arcs in coordinate 
systems that are stationary with respect to media 
1 and 2, respectively, the Larmor radius being 
determined by the magnetic field in region 1 or 2. 
Thus, a particle remains "tied" to the front for 
some time. 

If the angle between the particle velocity and 
the normal to the front, directed from 1 into 2, 
is denoted by cp, then the central angle J swept 
by the particle in medium 2 is connected with cp 
by the relation J = rr + 2cp. Here - rr /2 ~ cp ~ rr /2 
and 0 ~ J ~ 2rr, and cp is positive when J > rr. If 
v » v 1 the displacement of the front illc relative 
to the medium 2 during the stay 6.t = J/w of the 
particle in medium 2 ( w is the Larmor frequency) 
is equal to illc = v2 6.t = v2 J/w. On the other hand, 
& = r6.J cos cp, where r is the Larmor radius. 
Inasmuch as 6.J = 26.cp, and wr = v = pc2/E 
(where p is the momentum of the relativistic par
ticle, E is the total energy, and c is the velocity 

of light), we have for the change of the angle due 
to the finite stay of the particle in medium 2 

~qJ2 = (v2 I 2v) (n + 2qJ)jcos Ill· (1) 

We obtain similarly the change in the angle dur
ing the stay of the particle in medium 1. It is nec
essary to take account of the fact here that the 
front moves in medium 1 with velocity v 1, and 
that the same angle cp, which by definition is posi
tive on going from medium 1 into 2, is negative on 
going from medium 2 into 1. Then 

(2) 

Along with the angle changes (1) and (2) due to 
the finite time of stay of the particle in each region 
( 1 or 2 ) , the angle will be increased by the change 
in momentum of the particle upon reflection from 
medium 2. The particle momentum component 
normal to the boundary, p 1 = p cos cp, is increased 
by 6.p1 = 2 (v1 -v2 ) E/c2, while the increment of the 
parallel component Pil = p sin cp is 6.P11 = 0. From 
the equations 

~p sin qJ + p~qJ' cos qJ = 0, 

~p cos qJ- p~qJ' sin qJ = 2 (v1 - v2 ) e I c2 

we obtain for the increment 6.cp' of the angle and 
for the change 6.p of the momentum the following 
expressions 

~qJ' = - 2 (v1 - v2) e 1 pc2 = - 2 (u1 - v2) v-1 sin qJ, (3) 

~p = 2 (v1 - v2) ec-2 cos Ill· (4) 

The increment in the angle over the cycle 
(within a complete revolution of the particle 
through regions 2 and 1) is made up of the incre-
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ments* (1), (2), and (3), viz., D.cp = D.cpi + D.cp2 + D.cp'. 
Dividing by the increment of momentum over the 
cycle as given by (4), and taking (1) and (2) into ac
count, we obtain a differential equation relating p 
and cp: 

dp I dcp = pf (cp), (5) 

where f ( cp ) will be written out below. 
The angle at which the particle can no longer 

leave region 2 is cp = 7r/2. We therefore, have for 
the complete increment of the particle-momentum 
component perpendicular to the magnetic field upon 
passage of the shock wave front 

P = Po exp I (cpo), (6) 

it/2 

I (cp0) = ~ f (cp) dcp 

rt/2 
\ 4 (1 - v, I v1) cos2 qJ dqJ 

= J (n:+2q>)V2 /v1 +(~t-2qJ)-4(1-V2/Vt)SinqJCOS~(') 
~ 7 

where cp 0 is the initial angle of entrance into re
gion (2). 

The particle will experience maximum acceler
ation when cp 0 = - 1r/2, i.e., when it travels parallel 
to the front in the same direction as the Lorentz 
force acting from medium 2 towards this front. t 

It is characteristic that the magnetic field does 
not enter explicitly into this equation. The incre
ment in momentum is determined only by the ratio 

*Direct calculation of the increment of the angle in the 
coordinate system 1 over the cycle reduces to the following. 
We determine the increment ~cp1 in medium 1 during the stay 
of the particle in this medium [formula (2)]. Then the angle 
cp + ~cy1 is transformed to the coordinate system 2, using the 
relativistic transformation formulas. 

We calculate the increment ~(cp + ~cp,)' during the stay of 
the particle in medium 2, and then the angle (cp + ~'{'1)' 
+ ~ (cp + ~'{' 1) 1 is again transformed to system 1 and the angle 
increment over the cycle is calculated, viz., ~'fl = 'fl 
- ('1' + ~cp1)" - ~ (cp + ~'f'J". The momentum change in system 
1, corresponding to this angle increment, is determined upon 
reflection from the medium with account of the fact that the 
particle energy does not change during its stay in medium 2. 
The results of this much more cumbersome calculation agrees 
with the data given in the text, apart from terms of higher 
order in the smallness parameter v1 /v. But even without this 
calculation it is seen from the physics of the problem that the 
angle increment is the result of the effects listed in the text. 
It does not matter in what system of coordinates we determine 
subsequently the momentum increment from the differential 
equation (5), since the relative difference between p in sys
tem 1 and p1 in system 2 is of order v1/c, « 1. 

Tit is easy to see that if the source of fast particles is 
far from the front (at a distance greater than the Larmer 
radius of the particle in the medium 1), then the initial angle 
of entry will always be 'fo = - rr/2, and the acceleration will 
be a maximum. This is indeed the real case. 

of velocities of the front relative to the gas ahead 
and behind the shock-wave front, and increases 
with increasing density discontinuity, since 

1 - V2 I v. = 1 - P1 I P2 = (P2- Pt) I P2, 

where Pi and p2 are the densities of the medium 
in the regions 1 and 2. Since in a weak shock wave 
the density discontinuity decreases w:ith increasing 
ratio of the magnetic pressure Hi/87r to the gas 
pressure Pi for equal wave intensity, the weak
field case is the most favorable from the point of 
view of particle acceleration on the front. 

In the general case of hydromagnetic waves the 
expressions for v2 /vi are quite cumbersome. We 
shall consider two limiting cases, weak and strong 
waves. 

In the case of weak waves we are interested only 
in the increment of the momentum of the particle 
under consideration, compared with the momentum 
increment of the average-energy particles making 
up the plasma in which the shock wave propagates. 
For simplicity we assum~ that the gas consists of 
particles with two degrees of freedom. Then the 
equation of state, which relates the pressure P* 
= P + H2/87r and the energy E* = E + H2/47r, coin
cides with the equation for a perfect gas, and 

v21vt=[(y-1)M~2 +2J/[(y+l)M~2 ], (8) 

where the generalized Mach number M{ = vi/c{ 
is connected with the ordinary Mach number Mi 
= vi/ci by the relation 

M~2 = Mif (1 + Hi;8nP1); 

y is the adiabatic exponent, and in our case y = 2; 
ci2 =yPtfpi is the magnetohydrodynamic speed of 
sound. 

Let us assume that M{ = 1 + o, o « 1. This 
means that Mi « ..f3 ( 1 + Hi/87rPi )112 and, gener
ally speaking, we can also have Mi » 1. In first 
order in owe find from (8) that v2 /vi = 1-26/ 
( y + 1). Expression (7) yields in this case 

I(- n/2) = 26 /(r + 1). (10) 

Substituting the maximum value of I as given by 
(10) in (6), we obtain for o « 1 

~plpo = (p- po)lpo = 26 /(r + 1). (11) 

Let us consider now the momentum increment 
of the particles of a medium in which a weak shock 
wave propagates. It can be shown that in the linear 
approximation in o the temperature discontinuity 
in a gas with two degrees of freedom is equal to the 
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discontinuity of total energy E*, i.e., in our ap
proximation almost all the energy on the front is 
dissipated into heat. Therefore, using the expres
sions for the discontinuity of E*, we obtain 

!.3..= E; =[2rM:2 -(r-1)J[(r-1)M~2 +2J~ 1 2 r-1 

T1 E~ (r+1)"M~2 ~ + 6r+1. 
(12) 

The increment of the mean momentum (velocity) 
of the particles of the medium, p2 /p1 = -JT2 /T1 , is 

~P !PI= <fi2- PI) 1 P1 = <1 <r- 1)/(r + 1). (13) 

P/Po 

5 

4 

J 

-1(/2 Tr/2 Cfa 
Ratio of momentum p of accelerated particle after passage 

of the front to the initial momentum p0 , as a function of the 
angle of incidence cp0 

We see therefore that in our case (y = 2 ), sition of the plasma into two energy components, 
which corresponds to a greater heating of the me- hot and cold. 
dium particles then in the real case of particles of An attempt to determine the particle accelera-
a gas with three degrees of freedom, the increment tion on the front of a hydrodynamic shock wave 
(13) of the momentum of the particles of the medium was made earlier by Dorman and Freidman. [1] 
is half as large as the maximum increment of the However, the approximation used in [1] was too 
momentum of the particle under consideration (11), crude and not rigorously founded. The formula 
and is equal to the momentum increment of the for the energy increment obtained in that paper 
accelerated particle if the latter is perpendicularly did not reflect the dependence of the increment on 
incident on the front ( cp 0 = 0 ) . the angle of incidence of the particle on the front* 

The formulas given above are valid for a real and had the form 
particle gas with three degrees of freedom in the ~8 = 8 - 8 = _i_ (cpo)• v1 I v.- 1 . 

o :rt e0 v1 I V2 + 1 
case when Hi/81rP1 « 1. Then M*"" M = 1 + o. For a strong wave [v1/v2 ~ (y + 1)/(y-1) ~ 4] 
The increment of the average momentum of the we have 
particles of the medium (13) is o/ 4, and that of ~8 = -~ ~ (cpo)•. :rt 5 eo 
the accelerated particle (11) is 36/4, i.e., three In the nonrelativistic case the total energy Eo 
times greater. ~ mc2 and we obtain for the increment in the ki-

Let us consider a strong shock wave ( Mi » 1 ) . netic energy 
In this case P1/p2 = v2 /v1 = (y-1)/(y + 1) and 

0 
Lie ek -ek 4 3·2 1 6 -;o- = ~e-0- -- n -5-~ . 

expression (7) reduces to 
tt/2 tt/2 

I ( = ( f ( ) d = ( 4 cos2 cpdcp 
!Jlo) J !p !p J r:rt - 2cp - 4 sin cp cos cp (14) 

cp• <Po 

The results of the numerical integration of this ex-
pression with y = % and substitution in (6) are 
shown in the figure. The maximum increment of 
the accelerated-particle momentum amounts to 
p/p0 = 5.23 when cp 0 = - 1r/2. This means that 
the energy, say, of a nonrelativistic particle in
creases 27 times on passing through the front, 
while the energy of an ultrarelativistic particle 
increases 5.3 times. 

When M{ » 1 we obtain instead of (12) 

r.< E; _ 2r(r-1) M*2 
Tl E~ - (I+ 1)2 I • 

(15) 

For a particle gas with two degrees of freedom 
( y = 2 ) (for which the heating is greatest), and 
when Mi'2 < 60, this quantity is less than the maxi
mum increment in the energy of the accelerated 
particles. Therefore not only weak waves but also 
intense waves up to M{ ~ 8 will be most favorable 
for the acceleration of particles of the energy com
ponent of the plasma with minimum heating of the 
bulk of the gas, and can contribute to the decompo-

k k 

(Ek/E~ ~ 2.6), where Ek = mvV2. In the ultra
relativistic case Eo "' cp0 and !lE/ Eo ~ 4 x % 1r 

..... 0.8. The authors themselves state that their es-
timate of AE is approximate, accurate to a coeffi
cient "'2-3 (as can be seen from the text of the 
present paper, the error is considerably greater). 
It is therefore difficult to judge on the basis of 
the paper by Dorman and Freidman whether par
ticles can be accelerated on the front of a hydro
magnetic shock wave. 

1 L. I. Dorman and G. I. Freidman, Voprosy 
magnitnoi gidrodinamiki i dinamiki plazmy ( Prob
lems of Magnetohydrodynamics and Plasma Dy
namics), Riga, (1959). 

Translated by J. G. Adashko 
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*By averaging expression (6) over the angles, assuming iso
tropic incidence of these fast particles on the front, we would 
obtain a formula which would coincide with the results of[•] 
in order of magnitude. But this must not be done since, as 
already noted, in the real case the fast particles are incident 
on the front at an angle cp0 = - rr/2. 


