³Basov, Krokhin, and Popov, JETP **40**, 1203 (1961), Soviet Phys. JETP **13**, 845 (1961).

Translated by H. Lashinsky 171

WHAT IS HEAVIER, ''MUONIUM ONE'' OR ''MUONIUM TWO''?

L. B. OKUN' and B. PONTECORVO

Joint Institute for Nuclear Research

Submitted to JETP editor August 10, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) **41**, 989-991 (September, 1961)

Some years ago it was noted^[1] that muonium [the atomic system $M \equiv (\mu^+ e^-)$] can spontaneously transmute in vacuum into antimuonium \overline{M} $\equiv (\mu^- e^+)$. The oscillations $M \rightleftharpoons \overline{M}$ would be analogous to the transmutation $K^0 \rightleftharpoons \overline{K}^0$.^[2]

Recently several papers devoted to this problem have appeared in the literature.^[3-6] The aim of the present paper is to emphasize that the analogy between the oscillations $M \rightleftharpoons \overline{M}$ and K^0 $\rightleftharpoons \overline{K}^0$ is even more complete than noted earlier in that the decay of the states which are even and odd in combined parity (i.e., under PC), viz., $M_1 = (M + \overline{M})/\sqrt{2}$ and $M_2 = (M - \overline{M})/\sqrt{2}$, proceeds via different channels, as in the case of K_1^0 and K_2^0 . Here M_1 and M_2 are the muonium states which are stationary in vacuo.

Let us investigate the case where only one kind of neutrino exists and there is no direct $(\mu e)(\mu e)$ interaction.^[1] One would expect this case to correspond to reality if there would hold in nature the so called "Kiev symmetry," i.e., invariance of all weak interaction processes under the substitution $\mu \rightarrow \Lambda$, $e \rightarrow n$, $\nu \rightarrow p$. If $K^0 \neq \overline{K}^0$ oscillations exist this symmetry points to a possibility of $M \neq \overline{M}$ oscillations. In any case the transmutation would in this case be due to the same interaction which is responsible to the decay of the free muon $\mu^+ \rightarrow e^+ + \nu + \overline{\nu}$. Naturally the question arises: in what respect do the even and odd muonium states differ? The decay channels of the odd state M_2 will be

$$e_{\text{ifast}}^{+} + v + \bar{v} + \bar{e}_{\text{slow}}, \qquad (1)$$

$$e_{j\text{fast}} + v + \bar{v} + e_{slow}^{+},$$
 (2)

$$\mathbf{v} + \mathbf{\bar{v}}$$
. (3)

We are considering here muonium with spin 1, since a system with spin 0 can not decay into a neutrino pair in view of the neutrino helicity. The even system M_1 , also with spin 1, can decay via channels (1) and (2) but the decay via channel (3) is forbidden. The circumstance that the spin-1 even system can not decay into the pair $\nu + \bar{\nu}$ is similar to the case of spin-0 odd K_2^0 meson which can not decay into two π mesons. By means of Lehman's theorem ^[8] one can show that the mass of M_2 is greater than that of M_1 . As is well known, one cannot decide the question of which is heavier, the K_1^0 or the K_2^0 meson, on theoretical grounds, ^[3] because of the difficulties associated with the strong interactions.

In contrast to the $K_1^0 - K_2^0$ case, the difference in the decay characteristics of the systems M_1 and M_2 is rather small. Physically this is associated with the large size of the atomic system: even though strictly speaking the decaying objects are M_1 and M_2 , in the overwhelming number of cases it is the "free" muon which decays in the atomic system. In principle, however a difference still exists between the decay channels of M_1 and M_2 . It was thought worthwhile to point this out even if only for pedagogic reasons.

The above arguments about the difference in the decay channels of M_1 and M_2 remain true also if there exists a direct $(\mu e)(\mu e)$ interaction.^[1] However, then the mass difference obviously will be determined by the $(\mu e)(\mu e)$ interaction^[10] and we then will not be able to say anything about the sign of the mass difference of M_1 and M_2 .

We now assume that there exist in nature two neutrino types: ν_e and ν_{μ} .^[11] If e and ν_e on the one hand and μ and ν_{μ} on the other hand have different additive quantum numbers (charges) then the transition $M = \overline{M}$ is strictly forbidden and it makes no physical sense to talk about M_1 and M_2 .

We now shall discuss the recently $proposed^{[12,13]}$ possibility that there might exist multiplicative quantum numbers. In that case the decay of the free meson is given by

$$\mu^{+} \rightarrow \begin{cases} e^{+} + v_{e} + \overline{v}_{\mu} \\ e^{+} + \overline{v}_{e} + v_{\mu} \end{cases}$$

and the transmutation $M \rightleftharpoons \overline{M}$ is due to the direct $(\mu e)(\mu e)$ interaction. Then there does not exist a difference in the decay channels of the even and odd muonium states. Both M_1 and M_2 can decay through the channels

$$e_{\text{fast}}^{+} + v_e + \overline{v}_{\mu} + e_{\text{slow}}, e_{\text{fast}}^{-} + v_e + \overline{v}_{\mu} + e_{\text{slow}}^{+}$$

$$e_{\text{fast}}^{+} + \overline{v}_e + v_{\mu} + e_{\text{slow}}, e_{\text{fast}}^{-} + \overline{v}_e + \mu_{\mu} + e_{\text{slow}}^{+}$$

$$v_e + \overline{v}_{\mu}, v_e + v_{\mu}.$$

The authors are grateful to S. S. Gershtein for interesting discussions.

¹B. Pontecorvo, JETP **33**, 549 (1957), Soviet Phys. JETP **6**, 431 (1958).

²M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).

³S. Weinberg and G. Feinberg, Phys. Rev. Lett., in press.

⁴N. Gabbibo and R. Gatto, Nuovo cimento **19**, 612 (1961).

⁵S. L. Glashow, Phys. Rev. Lett. 6, 196 (1961).

⁶S. L. Glashow, Nuovo cimento **20**, 591 (1961).

⁷Gamba, Marshak, and Okubo, Proc. Nat. Acad. Sci. **45**, 881 (1959).

⁸H. Lehmann, Nuovo cimento **11**, 342 (1954).

⁹I. Yu. Kobzarev and L. B. Okun', JETP **39**, 605 (1960), Soviet Phys. JETP **12**, 426 (1961).

¹⁰ L. B. Okun' and B. Pontecorvo, JETP **32**, 1587 (1957), Soviet Phys. JETP **5**, 1297 (1957).

¹¹ B. Pontecorvo, JETP **37**, 1751 (1959), Soviet Phys. JETP **10**, 1236 (1960).

¹² R. Gatto, Proc. 1960 Ann. Int. Conf. High Energy Phys., Rochester, Un. of Rochester (1960), p. 609.

¹³G. Feinberg and S. Weinberg, Phys. Rev. Lett. 6, 381 (1961).

Translated by M. Danos 172