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We consider the motion of charged quasiparticles in electric and magnetic fields varying 
slowly in time and space. We derive and investigate "averaged" equations of motion for 
various geometries of the equal-energy surfaces. Properties of the motion in the vicinity 
of saddle-points in p space are studied. It is found that for such points there arises a 
peculiar type of scattering which is not connected with the presence of a force center in 
configuration space. We calculate the probabilities of the particle arriving in various 
regions for different types of motion. 

1. INTRODUCTION is given by E = const, PH = const, where PH is 

A the component of the momentum parallel to the 
LL statistical, thermodynamical, and kinetic magnetic field. Further, the motion in p space 

properties of metals and semiconductors are re- and r space depends strongly on the topological 
lated to the dynamics of charged quasiparticle properties of this trajectory curve E = const, PH 
motion, the charged quasiparticles being the cur- = const. For a closed trajectory the motion in p 
rent carriers in such substances. The energy space is periodic with period T0 = m *c/eH, where 
E (p) of a quasiparticle is a complicated periodic m * is the effective mass for the region enclosed 
function of the quasimomentum p, the period be- by the trajectory; [i] the motion in r space is un-
ing that of the reciprocal lattice multiplied by 21Tli. bounded only in the direction of the magnetic field. 
In the ideal-gas approximation, which is good enough For an open trajectory, the motion in r space is 
for describing most of the phenomena, the dynamics of unbounded also in directions perpendicular to the 
the motion is determined by the dispersion law of magnetic field. 
E (p ), for which it is important to know the geom- If the magnetic field is allowed to vary in space 
etry of the isoenergetic surfaces. Anisotropy in and time, and also if there exists an electric field 
E (p) leads to several important peculiarities in parallel to H, the energy and the component of the 
the quasiparticle motion as compared with the mo- momentum along the magnetic field are no longer 
tion of free electrons. These peculiarities are integrals of the motion. The nonconservation of 
manifested in macroscopic properties of metals E and PH• as well as significant anisotropies in 
and semiconductors when the mean free path is the dispersion law lead to unique peculiarities in 
much greater than lengths of the order of the tra- the quasiparticle motion. 
jectory in r space. This is a condition which is The present article is a study of quasiparticle 
fulfilled for sufficiently low temperatures. motion in electric and magnetic fields varying 

The equations of motion of noninteracting par- "slowly" in time and space. Such fields satisfy 
ticles in electric and magnetic fields are the usual the conditions 
Lorentz equations 

p = eE + (ejc) [vH], v = iJejiJp, (1) * 
where E is the electric field, H the magnetic field, 
and v the velocity of the particle. 

The motion of a quasiparticle in a homogeneous 
constant magnetic field is well understood. For 
this case the trajectory of the particle in p space 

*[vii] ;= v x H. 

yE = cEjvH ~I. 

(2) 

Here t0 and L are, respectively, a characteristic 
time and length for the variation of the electro
magnetic field, and Ro is the radius of curvature 
of the trajectory in r space. In practice these 
conditions are fulfilled up to very large field gra
dients and frequencies (for instance for H of the 
order of 103 oersteds, gradients of the order of 
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V'H/H ~ 102 em - 1 and frequencies of the order of 
w0 ~ 108 sec-1 are permissible). Conditions (2) 
mean that the true motion of the particle can be 
treated as the sum of two motions, namely a smooth 
variation of the "averaged" quantities R = r, 
PH= PH• and iff = €, and rapid oscillations which 
depend on R, PH, and iff as parameters. 

For the closed-trajectory case, the motion in 
p space can be thought of as a combination of the 
drift, rotation, and deformation of the "current 
leaf,"orofthecurve E=iff(t), PH=PH(t) along 
which the particle keeps rapidly rotating. 

If the equal-energy surface is not everywhere 
convex, the particle will be "scattered" by saddle 
points of the surface. This peculiar scattering 
does not depend on the existence of any force cen
ter in r space, but is related to the fact that a 
saddle point is a singular point (stationary point) 
for motion of a quasiparticle in a constant and 
homogeneous magnetic field. When dealing with 
an electromagnetic field satisfying (2), this point 
divides p space into several regions of essen
tially different types of motion. When the E = iff ( t), 
PH= PH(t) surface passes through such a singu
lar point, the type of motion of the particle changes 
abruptly, and the region it ends up in depends on 
the exact initial conditions. In our discussion it 
is the probability for scattering into these regions 
which is of physical interest. We shall calculate 
these probabilities for various transitions from 
one type of motion to another. 

2. CLOSED TRAJECTORIES IN p SPACE 

In studying the motion of quasiparticles in fields 
satisfying (2), we shall use the coordinates r, PH• 
E, and r (where r is the angle variable which de
fines the position of the particle on the trajectory 
given by E = const, PH= const). We shall write 
the functions r (t ), PH(t ), and E (t) in the form 

r (t) =, R (t) + p (t}, pH (t) = PH (t} +PH (t), 
B (f)= iff (f)--:- e (t), (3) 

where the "averaged" variables R = r, PH= PH• 
and iff = € define the smooth motion of the particle;* 
R can then be thought of as the coordinate of the 
''center of the orbit,'' while PH, iff, and ~ ( R, t) 
= H (R, t)/H (R, t) determine the position of the 
"current leaf" in p space. 

The period T0 ( t) = eH/m *c is a function of the 
"instantaneous" variables E, PH• and ~. The func

*We shall henceforth define X by 

t+T, (I) 

\ X(t')dt' (3a) 

tions p, PH• and ? are rapidly oscillating incre
ments, and they satisfy the relations I pI ~ Ro. 
P'Ha/n ~ y « 1 (where a is the period of the lat
tice), and ?/ E ~ y « 1. Henceforth we shall de
vote our attention to the time variation of the 
"averaged" variables and derive their equations 
of motion. 

We first write the exact equations of motion in 
terms of r, PH• and E. 

From (1) we obtain 

Pn = p .L (vv); + p ..La;;at + eE~. 
e=eEv, r=v..L +v~;;, (4) 

where p 1 and v 1 are the projections of the momen
tum and velocity, respectively, on a plane perpen
dicular to the magnetic field. 

The variables R, PH, and iff satisfy the relation 
~ = * ( 1 + 0 ( y)). In averaging (4) the integration 
over the true time t' can be replaced, accurate to 
terms of order y, by integration over the angle 
variable* r along the section E = iff, PH= PH, 
~ = ~ (r, t). For this integration dr = cdpz/eHv1 , 
where dpz is the element of arc length of the curve 
E = iff, PH = PH. As is well known, such averaging 
gives v 1 = 0, PxVy = PyVx = 0, and PxVx = PyVy 
= S/2mn *, where S = S (PH• E, ~) is the area en
closed by the intersection of the surface E = iff in 
the plane PH = PH, and m * = ( 21r) - 1 as; BE. 

Noting that E(R+p) =E(R) + (p·V')E, and 
using the equation V' x E = - c-1 BH/at, we proceed 
to obtain the averages and arrive finally, after sev
eral relatively simple operations, to the set of 
equations 

PH = 2:m• (;V) ~ + P'l_ ~~ + eE~, 
& = eE~v~ + Mau;at, R = v~;, (5) 

where M = (e/2c)rxv- (e/2c)Rxv is the mean 
magnetic moment of the particle about the orbital 
center R, and 

T 

x~' = ~ ~xd't'. 
0 

The right sides of Eqs. (5) contain functions of PH, 
&, and R only. From Eqs. (5) and with the aid of 
the relations 

we can show easily that J = S (PH, & , ~ )/H (R, t) 
is an integral of the motion. Thus S/H is an adia
batic invariant not only for free electrons, but also 

*This variable has often been used in studying the mo
tion of quasiparticles in constant magnetic fields. 



MOTION OF CHARGED QUASIPARTICLES 671 

for charged quasiparticles with arbitrary disper
sion law.* 

Another important property of motion in a 
slowly space and time varying electromagnetic 
field is that the velocity of the orbital center is 
along the magnetic field. 

The existence of the S/H integral of the motion 
allows one to introduce an important simplification 
into the discussion of (5). Let us consider some 
special cases. 

1. Inhomogeneous magnetic field constant in 
time. For this case the orbital center R moves 
along a line of force of the magnetic field. If l is 
the arc length along such a line of force, the equa
tions of motion can be written 

(8 = const, S (PH, [8, ~ (l))/H (l) = const, 

l=v~(PH, [8, ~(l)). 

2. Electric field parallel to a magnetic field 
( E = const, H = const). The equations of motion 
become 

PH~'eE, S(PH, C8)=const, i=vg(PH, C8). 

For both the above cases the equations can be re
duced to quadratures. 

3. A varying magnetic field H = H ( t). Recall
ing that the electric field induced by the variation 
of the magnetic field is not energy conserving, we 
arrive at the following set of equations: 

Pu =pia~;at, J(PH, [8, t) = const, 

R=v~(PH, [8, t)~(t). 

3. OPEN PERIODIC TRAJECTORIES 

If the E = const, PH = const curves are open, 
the averaged equations of motion are derived quite 
differently for the two cases of periodic and aperi
odic curves. An E = const, PH= const curve is 
periodic if the direction in which it is open is par
allel to some reciprocal lattice vector B; then 
~ 1 B. If an open periodic trajectory occurs for 
at least one direction of ~ 1 B, then it is easily 
shown that it will occur also for any cross section 
whose normal lies within some angle cp ( 0 < cp 
::::: 27T) bounded from above and below. 

One must distinguish between two types of sur
faces on which open periodic trajectories occur: 
(a) surfaces for which there exists a one-dimen
sional set (an angle equal to 27T bounded from 
above and below) of normal directions leading to 
open curves; in this case all the open trajectories 
are periodic; (b) surfaces for which there exists 

*Assuming that the trajectory E = const, PH = const is 
closed. 

a two-dimensional set (solid angle) of normal 
directions leading to open trajectories; in this 
case only rational trajectories (with ~ 1 B) are 
periodic. 

From the above discussion it is clear that for 
motion in a plane magnetic field such that ~ (R, t) 
1 B, the E = E (t), PH= PH(t) curves remain 
periodic. In dealing with motion on periodic tra
jectories, we introduce the following set of coor
dinates: ~ is the unit vector in the direction of 
the magnetic field, e 1 is the unit vector in the 
direction along which the curve is open, and e2 

= ~ x. e1. In a plane field, e1 remains constant, 
and ~ II e2• The averaged equations of motion can 
be derived in the same way as for the closed tra
jectories. By an averaged quantity x (where x 
may be any function of the coordinates r, PH• and 
E ) we shall now understand an average as defined 
in Eq. (3a) with T0(t) equal to the time of flight 
in passing through an elementary cell of the re
ciprocal lattice. 

The averaged equations of motion are 

pH= 2!. (sV) ~ + Pj_ ~; + eE~. 
i = e(Er:,v~ + E2v~) + MaH;at, 

k = v~ s + v~e2; 
B 

S = ~p2dp1 , 2nm* = ~!, vg = 2:rr~I', (6) 
0 

where M is defined in the same way as in Eqs. (5). 
The main difference between motion on open 

trajectories and motion on closed ones is that in 
the present case v~ ;.; 0, which means that the av
erage velocity is not directed along a line of force 
of the magnetic field. This means that J = S/H is 
not conserved. The equation for J now becomes 

j - __§_ ( E - 0 if ) --1- __!}_ ( n) J - H e 2 p2 H, ' 2:rrm* e2 v • 
(7) 

We note that in the case of an electric field E II H 
(with E = const, H = canst), J is an adiabatic in
variant, as is the case for closed trajectories. 

4. OPEN APERIODIC TRAJECTORIES 

When dealing with open aperiodic trajectories, 
the average must be taken over a time interval T 
such that T0 « T « t0, where T0 is a time of the 
order of the time of flight of a quasiparticle through 
an elementary cell (T0 ~ c.li/eHva). When averag
ing bounded quantities defined on an E = canst, PH 
= const curve, the integration may be extended 
over the entire cross section, since the difference 

T' t+T 
• t 1 1 \ , 

l}m 2T, J xdT---y J xdt 
T~ -T' t 
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FIG. 1. One of the crystallographic surfaces of the recip

rocal lattice, intersected by a PH = const surface. Equal 
numbers denote equivalent points. 

is a rapidly oscillating expression with period of 
the order of xT0 /T (the variable T is defined in 
the same way as for the case of closed trajectories 

In calculating the mean value of such a quantity, 
the integration along an open trajectory passing 
through an infinite set of elementary cells can be 
replaced by a sum of integrals over equivalent 
segments within a single cell (Fig. 1). In the case 
of an aperiodic trajectory, these segments are 
dense and uniformly distributed in the cell. It fol
lows then that x is independent of PH· The PH
dependence of averages can also be neglected for 
periodic trajectories with large period ( B » ti/ a). 
This independence of PH makes it possible to drop 
this variable from our considerations, and to re
duce the number of equations of motion; then these 
become 

R = v~ (18, s) s (R, t) + vg (18, s) e2 (R, t), 

18 = e (E~v~ + £2v~) + MaH;at, 
where e2 and e 1 are defined as in the periodic 
case, and Mi = EikZTkz /2c. 

The asymmetric tensor Tkz is given in terms 
of integrals along the curve E = iS, E = E ( R, t) 
by the equations 

T12 =- (cjeH) P2V2, T13 =- (cjeH) P2v"; 

T' o 

T23 =-lim 2~' \ dr:'v2 ~ v~dr:", X= x-x, 
T'-Hx) ..::.r' 

(8) 

For constant electric and magnetic fields, the in
tegration reduces to quadratures: 

Iii 

1 \ d£' - ·--"'---;:-~ = t - t 0' 
e . E~ v~ (<£') + E2v~ (<£') 

1!1, c., 

If the function iS ( t) is known, the first of Eqs. (8) 
can be integrated. 

During its motion a particle may enter onto a 
periodic trajectory with period B ~ n/a. In this 
case the PH-dependence of x cannot be neglected. 
In the general case of a nonplane field [with 
E ( R, t) not perpendicular to B], a particle is in 
the neighborhood of such a trajectory for a time 

FIG. 2 

of the order of T0t0 /T. This means that one can 
use Eqs. (8) for times ~ to. 

5. SCATTERING ON A SINGULAR POINT 

Scattering will occur in a slowly varying field 
if the motion undergoes transition from one type 
to another. Regions in p space with a different 
type of motion are separated from each other by 
segments of self-intersecting trajectories formed 
by the intersection of an E = const surface and a 
plane tangent to an isoenergetic surface at a hyper
bolic point. Classically such points are stationary 
points for motion in a homogeneous and constant 
magnetic field. The period of motion diverges 
logarithmically as PH- fH (where fH = E • f, and 
f is the p-space position vector of the singular 
point). 

It is easiest to understand the essentials of such 
scattering in terms of the example of a weakly in
homogeneous time-constant magnetic field which 
has at least the one straight line of force r = r0 

+lEo· Let F be a saddle point on the surface E 
= Eo, such that the normal to the surface at this 
point is parallel to Eo· The intersection of E = Eo 
with PH = fH is a figure-eight whose intersection 
point is at F. If, under the motion in p space, 
the "current leaf" E = Eo, PH= PH(t ), E = Eo 
contacts the surface at the saddle point, it gets 
broken up into two "current leaves" in the two 
regions I and II which are separated by the singu
lar point (Fig. 2). The types of motion are quite 
different in these two regions. Whether the par
ticle enters region I or region II depends on the 
exact ("microscopic") initial conditions. The 
"microscopic" initial conditions are distributed 
so that each macroscopic energy-surface element 
determined by the averaged coordinates contains 
points from which the particle can enter region I 
as well as region II. From this point of view we 
can treat the entrance into either of these regions 
as a random process, and thus speak of the "scat
tering" of particles in the region of a singular 
point; then the probabilities w1 and w2 for scat
tering into each of the two regions have well de
fined values. 
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8-0+8 
a 

8-8+8 
b 

FIG. 3 

To find w1 and w2 let us consider a classical 
ensemble of particles whose distribution is given 
in terms of some directional parameter to be de
termined later. On its last pass before entering 
into region I or II, every particle crosses the 
principal curvature line passing through F (for 
line p2 = 0 in Fig. 2) for some value of PH(O). 
Having gone fully around one of the loops of the 
figure-eight, the particle finds itself again in the 
region of the self-intersection point. Then, de
pending on the sign of PH(t) - fH, the particle at 
this instant enters region I or II; the value of 
PH(t)- fH is determined uniquely by PH(O) at 
the point where it was last intersected by the tra
jectory of the particle. It is seen from this that 
PH(O) is a convenient impact parameter to use. 
Let regions I and II correspond to intervals OJ 
and on of values of PH(O ), and these will then 
determine the probabilities for entering these 
regions. The scattering probabilities w1 and w2, 

i.e., the relative number of particles entering re
gions I and II, respectively, will be proportional 
to the flux of particles across OJ and on. For a 
sufficiently smooth distribution function these are 
proportional, to lowest order in y, to the intervals 
themselves. 

These intervals can be obtained from the rela
tion 

t 

PH (t) =PH (0) +~PH dt'. 
0 

From this we obtain 

T1 T 2 

bi = ~ PHdt', bu = ~ pHdt'. 
o T, 

1 - 8+ j 
- a 

1 - 0+ I 
+ 

b 

FIG. 4 

8-l + 
-a 

8-1 + 1 
b + + 

FIG. 5 

(Here T 1 is the time it takes to go around the I 
loop of the figure-eight, and T2 is the time it takes 
to go around the entire figure-eight; T1, 2 ~ T0 In y.) 

The largest contribution to the variation of PH 
during the time it takes to go around the figure
eight is given by those parts of the trajectory 
which are far from the singular point; in other 
words, the total change in PH is of order yli/a. 
This is because at the singular point itself (for a 
field whose direction is constant) PH = 0, and the 
contribution to the integral from points close to 
the singular point is of order y2 In y. [We bear 
in mind the fact that the time it takes to go around 
depends logarithmically on PH(O) - fH.] It then 
follows that to first order in y the integral ex
pressions for o1 and on can be written 

bi = ~ pHd-r, bu =~PH d-r, 
I II 

where the integrals are taken, respectively, over 
the I and II loops of the figure-eight (and T is 
the angle variable introduced earlier). Using the 
first of Eqs. (5) and recalling that the field has a 
straight line of force, we obtain 

where S1 and S2 are the areas enclosed by the 
loops of the figure-eight. From (9) we arrive at 

w1 = S1((S1 + S2), w2 = S2((S1 + S2). 

(9) 

In general there exist several types of transi
tion from one kind of motion to another. These 
are indicated schematically in Figs. 3-5. The 
right sides of these figures contain symbols cor
responding to the two regions into which the scat
tering takes place. A circle indicates a closed 
trajectory, while an arrow indicates an open peri
odic one, and the direction of the arrow indicates 

FIG. 6 
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FIG. 7 

the direction of motion along this periodic trajec
tory. The kinds of equal-energy surfaces which 
correspond to these transitions are shown in Figs. 
6-8 by means of the PH= const contour lines. 
On these figures the self-intersection point is de
noted by the letter F. The heavy lines denote 
self-intersecting curves. The arrows show the 
direction of motion along the trajectories. Fig
ure 6 corresponds to diagrams 3a and b, Fig. 7 
to diagrams 4a and 5a, and Fig. 8 to diagrams 4b 
and 5b. The signs in Figs. 3-5 give the sign of 
PH- fH in the different regions.* 

In an arbitrary field satisfying conditions (2), 
the singular point f ( i£, ~ ) may move in p space 
(unlike the case considered above ) . Then the 
criterion for entering regions of different types 
of motion is the sign of ~(t) = PH(t)- fH(t) 
[where fH(t) = f (t) • ~ (t)] when the particle is 
in the neighborhood of the singular point. Then 
the intervals ol and on of ~ (O ), which deter
mine whether the particle enters regions I and II, 
are given for cases 3a, 4a, and 5a by 

~ ~ 

Or=\~ (pH-- fH) dt'J, Orr=~~ (pH- fH) dt' I' 
0 ~ 

and for cases 3b, 4b, and 5b by 
T, T, 

Or = J ~ (pH- f H) dt' I, Orr = I~ (pH- f H) dt'J. 
o r, 

Here T1 and T2 are the first and second times 
when the particle is in the neighborhood of the 
singular points; as before, T1,2"' To ln 'Y· 

Up to terms of order y the expression for o1 
and orr can be written 

Or = e~ I~ (pH- f H) ?~ I' 
L, 

where the contours L1 and L2 are the segments of 
the self-intersecting trajectories which bound the 
regions into which the particle may be scattered. 
(In the case of an open periodic trajectory, the in
tegral is taken over one period.) Equations (10) 
hold for all types of transitions. It should be noted 
that in cases 3b, 4b, and 5b, scattering can occur 

*Six other types of transitions, essentially the same as 
those of Figs. 3-5, are obtained by changing the signs. 

FIG. 8 

T2 T2 
only if the signs of J ~dt' and J ~dt' are op-

T1 o 
posite, while in cases 3a, 4a, and 5a, these signs 
must be the same. 

To derive the formulas for the scattering prob
abilities in cases 3a and 3b, we make use of the 
adiabatic invariance of J = S (PH, i£, ~ )/H ( R, t). 
Consider sb•:(fH( &, O. &, 0 (Sbr and S~r are 
the areas of the loops bounding the regions into 
which scattering takes place*). Using the fact 
J 1,2 = const to terms of order y ln y, w~ obtain 

T1.2 j~; = T1' 2 (i~- j1.2) = (8S1,2j8PH) i1T1.2· 

From this we obtain 

-(1) I '(2) I W1jW2 =Or/Orr = J cr J cr PH=fw (11) 

In deriving (11) we make use of the fact 

. T1i)Slji)pH l 
lim----=. 

P H-+f H T 2i)S2ji)p H 

Let us consider this equation for some special 
cases. In a time-constant weakly inhomogeneous 
magnetic field, 

~=~(~)/~(~) w2 ol H ol H ' 
(12) 

where l is the length of a line of force, and 81 and 
s 2 are the areas of each of the loops on the E 

= const surface defined by the intersection with 
the plane passing through the singular point and 
perpendicular to ~ ( l). For a straight line of 
force Eq. (11) goes over into (9). 

In parallel electric and magnetic fields ( E 
= const, H = const) we obtain 

wl = d__!!_sl (pH, Ecr (pH)) I dpd s2 (pH, Ecr (pH)) I -f 
W2 PH H PH- H 

(13) 

Transitions of types 4 and 5 differ topologically 
from those of type 3, since the former involve open 
periodic trajectories. Nevertheless in these cases 
also the formulas for the transition probabilities 
are obtained with the aid of the equation for J = S/H 

(for a periodic trajectory S =! p2 dp1, and the in-
o 

*In case 3b one of these loops is the entire figure-eight. 
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tegration is taken over one period). Using Eqs. (7) 
and proceeding similarly as above, we obtain the 
following expressions. For transitions of type 
4a and b 

~ = ~ = j(l) I { j<2) _ B (eE _ f fL) --1- f _1_ (o~Joxz) Bvt } . 
Wz 61 I cr 2 2 H ' 2:rtH ' 

(14) 

for transitions of type 5a and b 

w1 61 j~;- B (eEz-- fzH 1 H)+ f_1_ (o~jox2) vtB/211H 

Wz =~= J<~~-B(eEz-tzflJH)+fj_(o£joxz)vtBf211H' 
(15) 

where Vf is the component of the velocity at the 
singular point in the direction of the magnetic 
field. 

1 I. M. Lifshitz and M. I. Kaganov, Usp. Fiz. 
Nauk 69, 419 (1959), Soviet Phys.-Uspekhi 2, 831 
(1960). 

Translated by E. J. Saletan 
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