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An explicit form of the dispersion representations in energy and momentum transfer for 
the simplest square diagram with non-decaying masses is derived. 

]~E analytic properties of the simplest square 
diagram (four-branch vertex) have been investi
gated by many authorsPJ The aim of the present 
paper is to determine the explicit form of the dis
persion representations in the energy s and the 
square of the momentum transfer t in the center
of-mass system for the simplest square diagram 
with arbitrary external mass values consistent 
with the stability condition. 

If the external masses are sufficiently small, 
one can write the amplitude under consideration 
as a dispersion integral of the imaginary part, 
which can be determined with the help of the uni
tarity condition. As the masses of the external 
particles are increased, anomalous terms appear 
in the dispersion representation; these are due to 
the anomalous thresholds or to the presence of 
complex singularities in the amplitude. These 
terms can be determined by analytic continuation 
with respect to the masses appearing in the dis
persion relations. The method of analytic contin
uation with respect to the masses, as proposed by 
MandelstamPJ has been used earlier in the in
vestigation of the anomalies of the square diagram 
with different massesPJ 

In the first section of this paper we shall con
sider the singularities of the imaginary part of the 
amplitude, which must be known for the analytic 
continuation with respect to the masses in the dis
persion relations. In Sec. 2 we shall carry out the 
analytic continuation of the dispersion integral over 
s with respect to one of the masses with the condi
tion t < 0. In Sec. 3 we shall obtain dispersion rep
resentations which are valid for arbitrary values 
of t by analytic continuation with respect to t. We 
shall see that the amplitude has a complex singu
larity in s for certain nonphysical values of t. It 
is interesting to note that this singularity lies in 
the lower half-plane of s. Thus the amplitude is 
an analytic function of s in the upper half-plane 
for arbitrary mass values and for arbitrary real 
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t. This result remains valid w\len the external 
masses do not satisfy the stability condition, as 
will be shown in a subsequent paper. 

In Sec. 4 we carry out the analytic continuation 
with respect to the masses of the other particles. 
In this way we obtain a dispersion representation 
in s for arbitrary external mass values satisfy
ing the stability condition. It follows from the 
formulas of the present paper that the anomalous 
term can in all cases be written as an integral of 
a function which is formally identical with the 
Mandelstam function A12 ( s, t). [ 4] The dispersion 
representation in t can obviously be obtained from 
the representation in s by making the replacement 
s ~ t and relabeling the masses. 

1. FORMULATION OF THE PROBLEM. POSITION 
OF THE SINGULARITIES OF THE IMAGINARY 
PART OF THE AMPLITUDE 

Let us consider the anomalous singularities of 
the diagram shown in Fig. 1. Let P12 = P21• P23 

= P32• P34 = P43• P14 = P41 be the four-momenta of 
the particles involved in the reaction, and let m~, 
m~, m~, and m~ be the squares of the masses of 
the virtual particles. The amplitude correspond
ing to the diagram of Fig. 1 can be written in the 
form 

A= (1) 

where g is the coupling constant and the J.lik are 
given by* 

*The notation is the same as in [s J. 
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with 

Equations (8) - (10) are the same as those obtained 
by applying the Landau method [G] for the determi
nation of the singular points to the diagram under 

Pia = Pit = (Pt2 + P2al2 = s, P~4 = P~2 = (Pt2 + PH)~ = t · consideration. 

It f ll f th d f. "t" f h t . h The solution of (9) and (10) can be written in 
o ows rom e e m1 wn o 1-'ik t a m t e th f 

physical region of the reaction ( Pt2, P23) - ( P34• Pt4) e o:m V 2 2 
L\ (f.112• fld = fl12f.123 ± (I - f-112) (I - flza), (12) 

fl1a <-I, 

The function A ( J.'ik) is an analytic function of 
each of its arguments if the other arguments are 
fixed. It is known that for sufficiently small in
ternal masses, the function A (J.'ik) (with J-(24 > 1) 
can be written as a dispersion integral over J.'t3: 

-1 

A (fltk) = ~ ~ , At df-1~3 , (2) 
_ 00 fl13 - fl1a 

where At = Im A ( J.'ik) is determined from the 
unitarity condition. After rather involved calcu
lations one finds that 

A1 = K-'1'1n (~ 1!~2), ~1 = V- V K', ~2 = V + V K'.· (3) 

where K' = ( J.'i3 - 1) K, and V and K have the form 

V = f-124 (f!i3- I) - f-113 (f!12f!a4 + flz3f!14) + f!23f.134 + fll2fl14• 
(4) 

1 1 fl12 flta fll4 

K = fl12 1 fl'" fl .. 
flta fl2a 1 fla4 (5) 
fl14 fl24 fla4 1 

We assume in formula (3) that arg ~t = arg ~2 = 0 
and ...fK > 0 in the physical region. 

The function A (J.'ik) in formula (1) is the limit 
of the analytic function (2) obtained by letting J.'t3 
approach the real axis from the lower half-plane. 

In order to obtain for A ( 1-'ik) a dispersion re
lation which is· valid for large external masses, 
we must continue formula (2) analytically with re
spect to the masses. For this purpose we must 
investigate the positions of the singularities of 
At in the variable J.'t3 as functions of the external 
masses. The singular points of At are evidently 
determined by the equations 

~1 = 0, 

It is easily verified that (6) and (7) imply 

where 

')., (f.112> f-123> fld = 0, 

A (f.134• f-114• fld = 0, 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(13) 

If the absolute values of J.'t2, J-(23, J.'t4, and 1-'34 are 
smaller than unity, then 

where 

L\ ± (!112• fld = cos (812 ± o,3), 

L\ ± (f.114• fla4) = cos (0!4 ± 034), 

oik = arc cos flik• 

(14) 

(15) 

(16) 

We shall denote the four roots of (9) and (10) 
also by the symbols ~i ( J.'t3) ( i = 1, 2, 3, 4 ) , num
bering them in the order of increasing values: 

L\1 (f.113) < L\, (fld < L\3 (fli:J) < L\4 (fld· 

The solution of (8) has the form 

fl~ = (f.1~4- I )-1 { w (f.124• f-114, f-123, fl12' f.134) 

±['A. (f.112> f-114• f-124) ')., (f.123> f.134• !124)('}. 

Solving (8) with respect to J-(24 , we have 

fl~ = (f.Li3- I )-1 { w (fll3• f-123, f-114, f-112• f.134) 

±['A. (f.112• f-123, f-113) A (f.134• fl14, fld('}. 

Here 

(17) 

(18) 

(J) (a, ~. y, 0, v) = C/. (~r + ov)- (~v +yo). (19) 

The functions J.'f3 and J.'f4 will also be denoted by 
0 i ( J-(24 ) and 0 i ( J.'t3), where i = 1, 2 and 

It is seen from (17) and (18) that the curves (8) lie 
in the dashed regions of the ( J.'t3, J-(24) plane (see 
Fig. 2). For brevity, curves lying in the regions 
I, ... , V will in the following be called curves 
I, ... , V, respectively. 

The curves I - IV have as asymptotes the 
straight lines J.'t3 = ± 1, J-(24 = ± 1. These curves ei
ther lie entirely inside the region between the asym
ptotes or touch the straight lines ~t ( J.'t3), ~4 ( 1-'t3), 
~t ( 1-'24), ~4 ( 1-'24), where ~i ( J-'24 ) are the roots of 
the equations 

(20) 

i.e., 
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FIG. 2 

numbered in the order of increasing values. 
It can be shown that curve I touches the straight 

line ~1 ( f.J.1a) if the condition 

(fLI2 + fL2a) ([La + [La4) > 0 

is fulfilled. If the inequality sign is reversed, 
curve II touches the straight line ~1 ( f.J.1a). 

If 

(21) 

(22) 

curve III touches the straight line ~1 ( f.J.24 ), whereas 
curve II touches the straight line ~1 ( f.J.24 ) if the in
equality sign in (22) is reversed. The position of 
the curves I- III under the conditions (21) and 
(22) is shown in Fig. 2 (solid lines). Figure 2 
also shows the position of these curves when the 
conditions (21) and (22) are reversed (dotted lines). 

It is easily seen that part of curve I can lie in 
the physical region for certain values of the masses. 
But this part of the curve is actually not singular 
for A1. 

As will become clear in the following, formula 
(2) is valid if 

fL12 + !123 > 0, [114 + fta4 > 0, (23) 

i.e., if 

Condition (23) implies the inequality (21). The 
positions of the curves I and II for this case are 
indicated by solid lines in Fig. 2. 

2. ANALYTIC CONTINUATION WITH RESPECT 
TO f.J.12 AND f.J.2a FOR f.J.24 > 1 

Let us now turn to the analytic continuation of 
formula (2) with respect to f.J. 12 in the region f,J.24 

• -f 

> 1. A dispersion relation for A ( f.J.ik) for other 
values of f.J.24 can be obtained by analytic continu
ation with respect to f,J.24. 

In order to carry out the analytic continuation 
with respect to f,J.12, we assume that f.J. 12 has an 
infinitesimal imaginary part - i6. To be definite, 
we assume that 6 > 0. The case 6 < 0 is treated 
analogously. It can be shown that, for 6 > 0, the 
point ~-(f.J.12• f.J.23 ) moves into the upper half-plane 
of f.J.13• whereas ~ + ( f.J.12, f.J.2a) moves into the lower 
half-plane. If the mass p~2 is sufficiently small, 
the point D1 ( f.J.24 ) lies in the lower half-plane, 
and the point D2(f.J.24 ), in the upper half-plane. 
The positions of the singular points in the complex 
f.J.1a plane and the cuts leading away from them are 
shown in Fig. 3 for the case where the masses are 
sufficiently small, i.e., condition (23) is fulfilled. 

The cuts coming from the singular points must 
be chosen in such a way that ...fK is positive in 
the region f.J.13 < (-1, D1(f.J.24 )) and arg ~ 1 = arg ~ 2 
= 0. 

A 2 • . d s P12 mcreases, 1.e., as f.J.12 ecreases, the 
point ~-(f.J.12• f.J.23 ) remains in the upper half-plane 
until f.J.12 reaches the value 

(24) 

i.e., 812 + 823 = 7r. 

For small f.J.12 < - f.J.2a the sign of the inequality 
(21) is reversed. The positions of the curves I 
and II for this case are indicated in Fig. 2 by 
dotted lines. 

If f.J.12 =- f.J.23• ~-(f.J.12• f.J.2a> hits the half-axis 
f.J.1a < - 1 in the point 

~--(-[123• f12a) = -1-a62, 

where a is some positive number. As f,J.12 de
creases further, the point ~- ( f.J.12, f.J.2a) moves 
into the lower half-plane. The point o1(f,J.24 ) 
moves into the upper half-plane for a certain 
f.J.12 > - f.J.2a• without touching the half-axis /J.ia < - 1. 
The points ~+(f.J.12 , f.J.23 ) and D2(f,J.24 ) are of no in
terest, since they are always far removed from 
the half-axis f.J.la < -1. 

In order to prevent the point~- (f.J.12, f.J.23 ) from 
touching the contour of integration during these 
operations, we must deform this contour in the 
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way shown in Fig. 4. The integral along this con
tour will be an analytic function of ~-t 12 and is iden
tical with the integral (2) for ~-t 12 < - ~-t23 . Thus the 
integral along the contour shown in Fig. 4 repre
sents an analytic continuation of formula (2) into 
the region ~-t 12 < - ~-t23 . 

The integral along the contour C shown in 
Fig. 4 gives an anomalous addition to formula (2). 
This term can be reduced to an integral of the dis
continuity of A1 along the segment ( -1, t::..- (~-t 12 , 

~-t23 )) of the cut coming from the point t::..- ( ~-t 12 , ~-t23 ). 

Let us consider, for example, the case where 

K(~-112, !-12a) = 1'\1 (!-ld· 

In the region - 1 < 1-tta < t::..1 ( 1-tta) we have 

V2 >K', 

VK'<O, 

V<O; 

(25) 

(26) 

(27) 

the inequality (25) follows from (6) and (7), and (26) 

is obvious from Fig. 4. In order to prove (27), we 
note that the quantity V does not vanish for ~-t 12 
+ ~-t23 < 0 in the region ~-t24 > 1, -1 < ~-t13 < t::.. 1 (~-t13 ), 
and V-- oo for ~-t24 - oo, as is seen from for
mula (4). 

It follows from (25) - (2 7) that t::..- ( ~-t12 , ~-t23 ) is 
a singular point for In ~ 1 , and ~ 1 < 0 on the cut. 
On the other hand, d~ 1 /d~-t 13 > 0 in the point ~-t13 
= tlt(J.tta), since 

d£• : _ 1 d n;.£2) , 
d!-t13 !hz=.1l- ~ dJ.113 ;!-l13 =~, 

(28) 

Hence 1m ~ 1 > 0 near the point tl1 ( 1-tta) if 1-tta is 
in the upper half-plane, and 1m ~ 1 < 0 if J.tta is in 
the lower half-plane. In other words, arg ~ 1 = 7T 

on the upper branch of the branch cut and arg ~ 2 
= - 7T on the lower branch. The anomalous term 
Aan ( J.tik) is therefore equal to 

(29) 

Formula (29) is evidently also valid in the case 
when the point t::..- ( ~-t 12 , ~-t23 ) is not the one with the 

lowest value of all the tli ( ~-t13 ), since the function 
in (29) is analytic in ~-t 12 . For the same reason 
formula (29) maintains its form also when one 
continues with respect to ~-t23 . Hence formula (29) 
describes the anomalous term in the region ~-t24 
> 1 for 

(30) 

It is seen from (29) that the anomalous addition 
to formula (2) is expressed in the form of an inte
gral of a function which is formally identical with 
the Mandelstam function A12 , which in our case is 
equal to 

A12 (!-lik) = 2rt/ I VR I 
(see the following section). 

(31) 

3. ANALYTIC CONTINUATION INTO THE REGION 
#-'24 < 1 

Let us now establish a dispersion representation 
for A ( J.tik) in the region ~-t24 < 1. Here we must 
distinguish between two cases: 

1) 

2) 

(32) 

(33) 

In the first case Mandelstam's double represen
tation is valid, as will be shown below. We shall 
call this case the normal case. In the second 
(anomalous ) case there does not exist a double 
representation, since the function A ( Jl.ik) has 
complex singularities. 

1) Let us consider the analytic continuation in 
the normal case. If condition (32) is satisfied, we 
have, according to (14) and (15), 

1'\- (f.t12• f.t2a) = 1'\1 (!-11a)· 

The expression under the integral sign in formula 
(29) for Aan(J.tik), regarded as a function of ~-t24 , 

has the singular points 0 1 ( ~-t 13 ) and D 2 ( 1-tta ) , 
which lie on the curve II. We must draw the cut 
between these points in such a way that -fK 
= i 1-fKI for ~-t24 > 02 (~-t13 ). Then formula (29) 
can be written as a double dispersion integral 

in the region bounded by the curve II and the 
straight line #-'13 = - 1. 

The analytic continuation of the dispersion in
tegral (2) in its general form has been carried out 
by Mandelstam. He obtains the double integral (34) 

in the region ~-t24 < D 1 ( J.tta ), 1-tta < - 1. The sum of 
this integral and the double integral for Aan gives 
the double integral (34) in the region bounded by 
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FIG. 5 

the curve II. The double Mandelstam representa
tion is therefore valid if condition (32) is satisfied. 
This result has been obtained earlier .[1] 

For real 1-tik in the region ~-t24 < 1 we shall in
terpret the function A ( 1-tik) as the limit 

A (!113- io, !124- io), 0->-+0. 

With this definition, the function A ( 1-tik) is the 
scattering amplitude for the process 

(P12• P14)--+ (P2a• Pa4) 

in the region 1-t13 > 1, 1-t24 < -1. 

(35) 

We shall show now that under condition (32) those 
points of the curve II for which 1-t13 < 1-t~3• 1-t24 < l-t~4• 
where ~-t~3 and ~-t~4 are the tangent points of the 
curve II and the straight lines ~1 ( 1-t24 ) and ~1 ( 1-t13), 
are not singular points of the function A ( 1-tik) as 
defined by (35). For this purpose we write (2) in 
the form 

2ni - 1 d!l~s 
- n ~ V K (!1~3 - flu) ' 

-00 

(36) 

where 
YK > 0 for l-'24 < 01 (!lJs). 

YR = i I YR l for !124 >Ol (Ills); 

arg (- 61) = arg (- 6z) = 0, if !124 < 01 (f:lls)· 

Curve II is not a singular curve for the first 
term on the right-hand side of (36). The second 
term is an integral along the upper branch of the 
cut coming from the point 0 1 ( ~-t24 ) and along the 
lower branch of the cut coming from the point 
0 2 (~-t24 ) (see Fig. 5). 

If the function A ( 1-tik) is defined according to 
(35) for real 1-tik• we can move the contour of in
tegration into the upper half-plane in such a way 
that it does not go through the point 01(1-t24), i.e., 
this point is actually not singular. It will become 
clear in the following that this result holds true 
also in the presence of anomalies. 

The point 0 2 ( ~-t24 ) is a singular point of the 
second term on the right-hand side of (2) if 
0 2 (~-t24 ) < -1, and of Aan<~-tik) if 1-t24 > l-t~4• 
0 2 (~-t24 ) > -1. Therefore the point 02 (~-t24 ) is 
a singular point of A (~-tik) for 1-t24 > ~-t~4 . For 
JJ- 24 < JJ-~4 the point 0 2 (JJ- 24 ) > -1 is not a singular 

dzffltl) 

FIG. 6 

Dz{Pzll) 

point of A ( JJ. ik) if A ( J.l ik) is defined according to 
(35), as can easily be verified. 

Thus only those points of curve II are singular 
points of A ( 1-tik) which satisfy the conditions 

l-t13 > l-t~3• l-t24 > l-t~4· 
2) Let us now consider the anomalous case. 

The analytic continuation of formula (29) for 
Aan ( 1-tik) will be carried out in three steps: first 
into the region ~1 ( ~-t24 ) < ~-t24 < 1, then into the re
gion - 1 < ~-t24 < ~1 ( ~-t24 ) , and finally into the region 
l-t24 < -1. 

We first consider the analytic continuation into 
the region 

Here two cases can occur: 

a) ~12 + 623 < 2n - 1614- 6a41, 

b) s12+623>2n-j614-ea41· 

It follows from (14) and (15) that in the first 
case 

11- (!112' [123) = 112 ([113)' 

whereas in the second case 

(37) 

(38) 

(39) 

(40) 

a) Let us consider the first case. As long as 
~-t24 > t:i24, where t:i24 is the tangent point of the 
straight line ~2 (~-t13 ) and the curve V (see Fig. 2), 
formula (29) evidently represents a function which 
is analytic in ~-t 12 with the condition that -fK 
= i I /Ki. The singular points of -fK in the ~-t 13 
plane and the cuts leading away from these points 
are shown in Fig. 6. 

For the analytic continuation into the region 
1-t24 < t:i24 we shall assume that 

f.l2J = 17'24- io. (41) 

If o > 0 in (41), it can be easily shown that for JJ-24 
> t:i24 the point 0 1 ( ~-t24 ) lies in the lower and the 
point o2( ~-t24 ) in the upper half-plane of 1-t13. For 
~-t24 = j:i24 the point 0 1 ( ~-t24 ) crosses the segment 
( -1, ~2 (~-t13 )) and moves then into the upper half
plane, taking the contour along (Fig. 7). For ~-t24 

FIG. 7 
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FIG. 8 

< j:i24, the integration must therefore be carried 
out along the contour shown in Fig. 7. 

The same thing happens if o < 0 in (41), only 
that now the point 0 1 ( J1.24 ) moves from the upper 
into the lower half-plane (Fig. 8). 

As long as J1.24 > ~2 (J1.24 ), the contours C1 and 
C2 shown in Figs. 7 and 8 lie on the real axis and 
the integrals along them coincide. The point j:i24 

is therefore not a singular point of A ( Jl.ik). 
The anomalous term in the region ~2 ( J1.24) < J1.24 

< 1 has the form 

(42) 

where ...fK = i l...fK j, and () (x) = 1 for x > 0 and 
() (x) = 0 for x < 0. 

For ~1 ( J1.24 ) < J1.24 < ~2 ( J1.24 ) the contours C 1 and 
C2 move into the complex plane and the integrals 
along them will no longer coincide. The point 
~2 ( J1.24 ) is therefore a singular point for A ( Jl.ik). 
It follows from (41), (14), and (15) that 

~2 (!124) = max [ ~- (f!12• !114), ~- (!123• !134) ]. 

We note that the singular point with respect to J1.13 

for ~1 ( J1.24 ) < J1.24 < ~2 ( J1.24 ) is situated in the upper 
half-plane of J1.13, if A ( Jl.ik) is defined according 
to (35). Thus the amplitude is an analytic function 
of s in the upper half-plane. 

b) Let us now assume that condition (40) is sat
isfied. In this case the singular points 0 1 ( J1.24 ) and 
0 2(J1.24 ) fall on the segment (-1, ~-(J1.12 , J1.23 )) im
mediately after passing the point 

~3(!124) =max ~~-(!!12, !1-14), c.-(!123• !134)]. 

Considerations completely analogous to those in 
case a) show that the point ~3 ( J1.24 ) is a singular 
point for A ( Jl.ik), and after passing the point j:i24, 

where j:i24 is the tangent point of the curve V and 
the straight line ~2 (J1. 13 ), the contour of integra
tion is deformed, just as in case a). The anoma
lous term in the region ~2 ( J1.24 ) < J1.24 < 1 has the 
form 

(43) 

where ...fK is defined in the following way: 

VK= i I VR j,if f1. 13 is outside the interval.(21 (~t24 ), 02 (!!2 1)); 
(44) 

VR>O, if 0 2 (!!24)<!!13<D1(!!24)andin(41)o>U; 
(45) 

llK< 0, if fl.u is inside the interval (01 (!124), 0 2 (!1 24 )) 

and in (41) \o < 0. (46) 

When J1.24 < jj,24 we have 

VR = i: VR i for !!13 < u1 <!!24L (47) 

VR =- i I VR I for f113 > Dd!-12•1) (48) 

and when 

01 (!124) < !113 < 02 (!124) 

...fK is defined by (45) and (46). Here it turns out 
that only those points of the curve V are singulari
ties of the function A ( Jl.ik), defined according to 
(35), which satisfy the condition J1.13 > M13• J1.24 > ii.24• 

where jj,13 and ii24 are the tangent points of the 
curve V and the straight lines ~3 ( J1.24 ) and ~2 ( J1.13). 

As in the case considered above, A (Jl.ik) has a 
complex singularity in the upper half-plane as a 
function of J1.13 , if ~1 ( J1.24 ) < J1.24 < ~2 ( J1.24 ). How
ever, the point 

L-.2 (!le,) =min [C. c (f!,e, !114), 1T ([!23, [t31ll 

is not a singular point of A ( Jl.ik) in this case. The 
anomalous term is in this region equal to the sum 
of the integral (29) and an integral along the con
tours C1 or C2, which are shown in Figs. 7 and 8. 

Let us now consider the analytic continuation 
into the region - 1 < J1.24 < ~1 ( J1.24 ) • 

a) Let us assume that condition (22) is fulfilled. 
In this case the curve III touches the straight line 
~1 ( J1.24 ). After passing the point ~1 ( J1.24 ) the con
tours of integration therefore assume the position 
shown in Fig. 9 for the case o > 0 in (41) and in 
Fig. 10 for the case o < 0. The anomalous term 
has the form 

df-l;e 

~I 
VK {f-1; 3 - f.lla) 

(49) 

FIG. 9 
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FIG. 10 

where 
YK = i I YK I, if !113 < Or(f..l24); 

(50) 

VR>O 

(51) 

Considerations analogous to those above show 
that the point 0 1 ( J.t24 ) is not a singularity for 
A (J.I.ik), defined according to (35). The point 
~1 ( J.t24 ) is a singular point for A ( J.l.ik) if 

(52) 

but is not a singular point in the opposite case. 
This can be seen by analytic continuation of the 
dispersion representation in J.t24 with respect to 
the masses. 

b) Let us now turn to the case 

(53) 

In this case the straight line ~1 ( J-1.24 ) touches the 
curve II. Considerations analogous to those above 
show that the anomalous term will be 

-1 ' 
A ( ) 4ni \ df.t, 3 

an f.l;k = -~tl(-l-Odf..l24)) J ~rK(' _ ) 
o, (p.,.) r 1!13 1!1s 

(54) 

where ..fK = - i i/K j. 
As in the above-mentioned cases, it can be 

shown that the point 0 2 ( J.t24 ) is not a singular 
point of A ( J.l.ik). The point ~1 ( J.t24 ) will evidently 
be a singular point, since it is in this point that 
the cut for A ( J.l.ik) as a function of J.t24, coming 
from the points ~2 ( J.t24 ) or ~3 ( J.t24 ) , ends. 

Let us consider, finally, the analytic continua
tion into the region J.t24 < - 1. It can be shown by 
the above-mentioned method that the anomalous 
term in this region is given by the formula 

-1 ' 

Aan(Jl;k) =- 4:i tl (- 1- D1 (f.l24)) ~ y K ( ~f.tta ) 
. o. (p.,.) ~tl3- 1!13 

(55) 

where 

VR = - i! VR \. if b > o in (41), 

for b < 0. 

The point 0 1 ( J-1.24 ) is not a singular point of 
A (J.tik), as defined according to (35). 

4. ANALYTIC CONTINUATION WITH RESPECT 
TO J.L14 AND 1-'34 

The formulas for the anomalous term obtained 
in the preceding section are valid if condition (30) 
is satisfied. In order to determine the anomalous 
term for the case when the masses of all particles 
are large, i.e., when 

(56) 

we must carry out an analytic continuation of the 
dispersion representation for A (J.tik) with respect 
to J-1.14 and J.t34• Condition (56) implies again the 
inequality (21), so that the curve I touches the 
straight line ~1 ( J-1.13 ) • 

The analytic continuation with respect to J.t14 

and J.t34 into the region 1 < J.t24 < .U~ 4 • where .U2°4 is 
the tangent point of the curve I and the straight 
line ~1 ( J.t13 ), is carried out in the same way as 
the analytic continuation with respect to J.t12 and 
J.t23 • The formula for the anomalous term in this 
region has the form 

(57) 

where 
~=max[~- (f..l12• f..l2a), ~- (!114• f.La4)]. 

The anomalous terms for other values of J.t24 can 
be obtained by analytic continuation with respect 
to J-1.24· 

In the region J.t24 > .U~4 the anomalous term is 

where ..fK = i 1/K 1. 
Therefore, only those points of the curve I are 

singular points of A (J.I.ik) which satisfy the condi
tion J.t24 > .U~4 • 

In the region ~2 ( J.t24 ) < J.t24 < 1 the formula for 
the anomalous term with condition (37) has the form 

{3 ' 

A an=- 2:i ~ d:la 
• ( ) V K (!113 - !lis) 
u.t 1-'-ts 

(59) 

where ..fK = i 1/K I, and ,U24 is the tangent point 
of the curve V and the straight line ~2(J.1.13). 

If the condition (38) is satisfied, the anomalous 
term is equal to 
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(60) 

In the region .6.2 ( J.t24 ) < J.t24 < .6.1 ( J.t24 ) the anoma
lous term Aan is equal to the sum of expression 
(60) and an integral along the contours C1 or C2, 

which are shown in Figs. 8 and 9. All considera
tions of the preceding section concerning the singu
lar points .6.2 ( J.t24 ) and 0 2 ( J.t24 ) are also valid in 
this case. 

In the region - 1 < J.t24 < .6.1 ( J.t24 ) we have, with 
condition (22), 

4 __ ~ni \ d~t;3 
- an- :r • VK (!1' - !11a) 

.3.1 (!J.l3) 13 

(61) 

where .fK is defined according to (50) and (51). 
If condition (53) is fulfilled, 

(62) 

where .fK = -i 1-fK 1. 
If J.t24 < -1, then 

where .fK is defined according to (58). 
In the case (56), as in the case (30), the curve II 

is not a singular curve for A ( J.tik). 
Thus, if (33) is satisfied, the anomalous addi

tions to the dispersion representation (2) are given 
for J.t24 > .6.4(J.t24 ) by formulas (29), (57), and (58), 
for .6.2 ( J.t24 ) < J.t24 < .6.4 ( J.t24 ) by formulas (42), (43), 
(59), and (60), for -1 < J.t24 < .6.1(J.t24 ) by formulas 
(49), (54), (61), and (62), and for J.t24 < -1 by for
mulas (55) and (63). 

In the region .6.1 ( J.t24 ) < J.t24 < .6.2 ( J.t24 ) the function 
Aan ( J.tik) has a complex singularity in J.t13, which 
is situated in the upper half-plane. In this region 
the anomalous term is given by the sum of the in
tegrals (43) or (60) and integrals along the con
tours c1 or C2, shown in Figs. 7 and 8. In all 
cases the anomalous term is given by some inte
gral of a function which is formally identical with 
the Mandelstam function A12• 

If condition (32) is satisfied, there exists a 
double Mandelstam representation in the form of 
the integral (34) over the region bounded by the 
curve II. 

All the formulas above have been derived under 
the assumption that the squares of the masses of 
the external particles have an infinitesimal posi
tive imaginary part. It turns out, however, that 
one obtains the same results if this small addition 
is taken to be negative. Therefore the values of 
the masses for which the anomalous additional 
terms appear are not singularities of A ( J.tik). 
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