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The absorption coefficient of electromagnetic waves in a plasma is calculated for e2/tiv « 1. 
Application of the temperature diagram technique makes it possible to take systematic ac­
count of collective effects and to obtain exact values of the factors in the Coulomb logarithm. 

1. As is well known, the Coulomb scattering cross vectors of the electrons, while e and m are the 
section diverges logarithmically. This leads to the charge and mass of the electron. The function 
necessity of taking into account the screening, Gpp' (k, w) is determined by the relations 
which is generally dynamic.Cl• 2J The kinetic oo 

plasma coefficients contain the Coulomb logarithm G,0 • (k, w) = ~ exp [(iw-v) t] 000• (k, t) dt, v -> + O, 
In (rmax/rmin), where rmax and rmin are re- (2) 
spectively the maximum and minimum impact pa­
rameters of the collision. The order of magnitude 
of these quantities can be established from simple 

1/T 

Gpp' (k, T) = \ dt.. (Ap', k (t - ili'A) Ap' -k (0)), 
0 

(3) 

physical considerations. For sufficiently low fre- where 
quencies, the Debye radius can be used for rmaxPJ 
For frequencies greatly exceeding the plasma fre­
quency, the role of rmax is played by the path tra­
versed by the electrons in a single period.C4J The 
value of the parameter rmin depends on the plasma 
temperature. For high temperatures, when this 
distance becomes less than the de Broglie wave­
length of the electrons, this wavelength can be used 
for rmin-[5] All these considerations permit us to 
determine the expression under the logarithm with 
accuracy up to a factor of the order of unity. 

.4 0 , "(z\ = exp (- H'zj i1i)a;_k 2ap+k/2 exp (H'zj ili). 

H' = H- J.LN; H is the Hamiltonian of the system, 
J.L is the chemical potential, T is the temperature 
in energy units, ( ... ) denotes the statistical 
average. 

For calculation of the function Gpp' (k, w ), we 
use the diagram technique suggested by Abrikosov, 
Gor'kov, and Dzyaloshinskii.[s] Performing inte­
gration by parts in Eq. (2), we get 

(4) G,p· (k, w) = {K~· (k, w)- Krr' (k, 0)} I iw, 
The purpose of the present paper is a rigorous 

calculation of the absorption coefficient of electro- where 

"" 
K~·(k,w)=~ (5) 

-::o 

1fT 

magnetic waves in a high-temperature plasma. An 
exact value is obtained for the expression under 
the logarithm for all frequencies of the field that 
are much higher than the collision frequency (in-
cluding frequencies of the order of the plasma fre- Krr' (k, 

' \ n"'"~.K~ k (»,• = :.! .\ e ,,. ( ' 11.) dA., 
-JJT 

quency ). A plasma is considered with singly-
ionized positive ions. 

2. For the determination of the absorption co­
efficient, one must compute the real part of the 
electron conductivity of the plasma. We shall 
start out from the general expression for the 
conductivity[2J in the absence of a magnetic field: 

hfu,, = 2.ninT, n = 0, ± 11. .. , 

R:O· (k. •) = fl (•) aG,p· (k, r:); a.= (i 1 h) <lAo·. k (•), 

Ap, -k (O)J) fJ (-c), 

(6) 

(7) 

Kro' (k, A) c= <T!.(Ap', "h (Ap, -k)o).; (A),.= e"H'Ae-i.H'. 
(8) 

It can be stated [ s] that the function Kf}p' ( k, w ) is 

( eli )2 r · dapdap• 
:1~., (k, w) = m ~ p1,Gpp' (k, w) p, (~n) 6 , 

the analytic continuation of the function Kpp' ( k, Wn) 
(1) in the variable w from discrete points of the imag­

inary axis ( n > 0 ) to the real axis. 
where k is the wave vector of the electromagnetic 
field, w is its frequency, p and p' are the wave 

3. The function Kpp' ( k, wn) is the sum of 
graphs of which some are shown in Fig. 1. In cor-
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a<=>c<JD 

b<=D<JD 

f~ 

FIG. 1 

respondence with the rules of application of the 
diagram technique,[S] to each electron line on the 
graph there corresponds the quantity 

!'T 

.j ~ /'c" /T;. (aq)i, (a; )11 ) d"A ~~ - Gq (en) 
- -irr 

=- (e" - eqf1 , 
(9) 

where en= (2n + 1)7riT, e:q =n2q2/2m-J.J.. The in­
teraction matrix element Uy = 47re2 /y2 corresponds 
to the wavy line; a minus sign corresponds to each 
closed loop. 

Account of the interaction of the electrons with 
the ions leads to the appearance of graphs similar 
to those shown in Fig. 1, on which internal loops 
are formed by the ion lines. The ion lines will be 
henceforth drawn dotted. One must integrate over 
each internal wave vector q in the diagram, so 
that ( 271") -a J d3q corresponds to it. Summation is 
carried out over each internal imaginary "energy" 
an so that TI:n corresponds to it. 

Without account of the interaction between the 
plasma particles the conductivity is determined 
by only one graph, shown in Fig. 1a. If the inter­
action potential were short-range, then we could 
limit ourselves in the calculation of the absorp­
tion coefficient to the graphs shown in Figs. 1b, c 
and the graphs which are obtained by substitution 
of the internal electron loop for the ion (see Fig. 
1b ). It can be expected [Z] that graphs of the type 
shown in Fig. 1d make a small contribution to the 
conductivity if w/ v » 1 ( v is the collision fre­
quency); graphs of the type shown in Fig. 1e are 
small if the gas condition holds: e 2n113/T « 1. 
Finally, one can neglect graphs of the type shown 
in Fig. 1f if e2 /tiv « 1 ( v is the thermal velocity 
of the electron). 

b<::> 
c<d 

FIG. 2 

Because of the presence of the Coulomb diverg­
ence the interaction must be renormalized. The 
renormalization reduces to the result [t, 2] that we 
must calculate the graphs shown in Fig. 2 in place 
of those shown in Figs. 1b and c. The thick wavy 
line satisfies the equation shown in Fig. 3. 

This equation corresponds to the function 

Dy (cxm) = {Py (cxm) +P:, (cxm)- V:;-1)-\ (10) 

Py (am) = (2:rtf3 ~ d3q (nq+Y/2- nq-Y/2) (eq+Yi2- Bq-Y/2- J:mf\ 
(11) 

P~ (am)= (2:rtf3 ~ d3q (n~+YI2- n~-Y/2) (e~+Y/2- e~--. 2- cxm)-\ 
(12) 

where am = 2m 7ri T, nq = exp (- Eq /T); the primed 
quantities nq and Eq are obtained from the un­
primed ones by replacing the electron mass by the 
ion mass. 

4. We proceed to the calculation of the graphs 
of Fig. 2. We shall consider the case in which the 
wavelength of the electromagnetic wave is much 
greater than the maximum impact parameter. 
Under these conditions, we can neglect spatial 
dispersion.* 

The expressions corresponding to the graphs in 
Figs. 2a, b, c have the form 

K~~· (wn) = T ~ Dp-p' (cxm):T ~ Gp (eJ + nwn) Gp (e,) 
m j 

X Gp' (eJ +am+ liron) G,· (e; + CXm), 

K~~· (wn) =~(~~aT~ Dy (cxm) T ~ [Gp (e1 + nwn)J2 
1m j 

X Gp+y (e, + CXm + nwn) Gp (ej) {2:rt)3 {J (p- p'). 

K~~· (wn) = ~(~~aT~ D-, (cxm) T ~ Gp (e1 + nwn.) [Gp (e1)J2 
m j 

X GP+Y (eJ + CXm) (2rr)3 {J (p- p'). 

Carrying out the summation over and adding 
all three expressions, we get 

*Account of spatial dispersion may prove to be essential 
in an analysis of the surface impedance in the case c/ w o 

< v/w (w0 is the plasma frequency, v is the thermal velocity). 
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FIG. 3 

(2nt6 ~ d3pd3p' p~'p:, [l(~"J. (w,) + K;;! (w") + K;~~ (w,)] 

= (2nt3 (1iw"t2 ~ y~'y.,d3yT); D ... (ct.m) [Py (ct.m -+ nw,) 
m 

(13) 

Here Py is determined by Eq. (11). In similar 
fashion, after summation over j and j', the sum 
of the graphs represented in Figs. 2d and e leads 
to the expression 

(2:rt(G \ J3pJ3p'ppp:, !K;~! (w,) + K~;? (w")) 

(2:rtr3 (h(•lu)- 2 +) YpYvri 3yT ~ D" (ct.m) Dy (ct.m 1- Jlw") 
m 

X [ P., ( 0: 111 -'- 11lun) - P ,. ( O:m) ]. (14) 

Making use of Eq. (10) [after addition of the ex­
pressions (13) and (14)) , we get 

') )-6 ,\."d'l d' • ' vt2) ( (~:rr •.. fJ . p P~P··''rP' ul") 

·\" d"y ·,·t,Yv T 'V D 1 p' -- I:Xn)"2(n~j2 ~ .,(Y.,)Dy(o:m t- I(•J,){ .,(o:m 
• . n. m 

+ hw,) - P:, (;xm)l {P., (.x 11 , -,· /1w") --- P., (cxm)}. (15) 

Summation over m in Eq. (15), and analytic con­
tinuation in w can be carried out as follows. Let 
F ( w) be the analytic continuation of the function 

T ~ cp (o:,") 1(l{tx"' + liwn) 
!fl. 

in the variable w from discrete points on the 
imaginary axis ( n > 0) to the real axis. Further, 
let the functions cp (a) and ljJ (a) coincide in the 
upper half plane with the analytic functions cpR( a) 
and 1/JR( a), and in the lower half plane with the 
functions cpA( a) and 1/JA( a), wherein the functions 
cpR( a) and 1/JR are obtained on the real axis from 
the functions cpA and 1/JA by complex conjugation 
and cp(O) = [cpR(o) + cpA(o) )/2, 1/J (O) = [1/JR(o) 
+ ljJA ( 0 ) ) I 2. Then the following relation ho Ids:* 

sh ~"! __!__ r dcx ltn q/<(cr) ~Ill 'lj/<(ll + liw) 
lmF((Il) ~ ' 2T2rr ~ stl(cr12n:) sh[(cr-)-liw)t2TJ · 

*sh =sinh. 

I 
FIG. 4 

(16) 

The integral is taken in the sense of its principal 
value. The relation (16) follows from the formula 

m 

1 \ a = ,.---: cth ZT cp (o:) 'ljJ (a+ liw11 ) d<X 
.'J-1tl • 

c 

+ Tcp (0) 'lji (hw11 ) + Tcp (-1iw11 ) 'lji (0). (17)* 

The contour C consists of the three closed con­
tours shown in Fig. 4, in which the paths along the 
large circle are infinitely far away. The integrals 
over the circle of large radius are equal to zero, 
so that integration over the contour C reduces to 
integration over the edges of the two cuts in the 
integrand functions. 

The integrals over the small circles surround­
ing the points a = 0 and a = - wn exactly cancel 
out the last two terms on the right side of (17). 
Thus, 

T ~q;(ct.,}1fl(<X,n + hw,.) =~ l,:i ~ cth 2~ {[cpR (a) 
m ---.:)0 

_ cpA(a)]1jlR(a + liw,) 

+ ['lj!R(a) . 'lj!A (a)) cpA (a- nw 11 ) da, 

where the integral is taken in the sense of its 
principal value. Analytic continuation now leads 
to the replacement of wn by w, and Eq. (16) is 
obtained without difficulty. 

Making use of Eq. (16) and the fact that Kpp' ( 0) 
is a real quantity, we obtain (in the approximation 
of interest to us) an expression for the real part 
of the conductivity: 

00 

, . ~ __ _ ,• ( bt) -• , li.w \ 2 ,1 \ l Y. (a -:- hw) 1·· J Re" (w) --- --. -. -.- sh -- r d y da sh~_ · sh ------_----.>m'w·' 2T • • '2T 'l.T _, 
--00 

< {Im [D~(a)P;.1 (o:)] Im [D~(ot + /l(u) p~R. (ex+ /il!l)J 

Im [D~(o: -: nw)j Im [D~(ot)P~(ot)P:/'(a)]). (18) 

Here u ( w) = uxx( w ). We have made use of the 
isotropy of the problem and replaced y~ by y2/3 
under the integral. The index R denotes the func­
tions obtained from (10)- (12) by replacement of 
O!mbya+io; o-+0. 

Let us introduce the dimensionless quantities 

x = (-';)'/, 1ia , 
. r 

*cth = coth. 
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where K = ( 4rn0e 2 /T) 112 is the reciprocal of the 
Debye radius, n0 is the concentration of electrons 
(ions ) , w0 = ( 4rn0e2 /m) 1/ 2 is the electron plasma 
frequency.-

After reduction of similar terms in the curly 
brackets and integration over the angles, we write 
the formula (18) in the following form: 

r , ( _ n0e2 2T h nw . ~ ( !:._)2 ( ST )'/,( Q , , • . 
. ~ G w) - mw2 nw s 2T 3 rtno \ T nm 1 Q + Q ) ' 

(19) 
00 co 

Q = (2n)-•;,.!. \ -r3d-r: \ dx 1. D~(x) D, (x + ~*) 1
2 <D (x, -r:) 

p v v 
0 -co 

co co 

.Q' = - (2n)-'/, ~ -r: 3d-r: ~ dx j D,(x) D, (x + ~*) /2 F' (x, -r:) 
-00 

1 r ~ I , w*) 
1
2 Q" = - (2n)-'/, p2 J -r:3d-r: J dx D~(x) D, ( x + -;r F (x, 1:) 

o -co 

X Pxp {- fJ2't2p2/2- x2j2p2- (x + w*j-r:)2/2p2}. (22) 

Here the following nondimensional functions have 
been introduced: 

I D, (x) l-2 = [t2 + <p (x) + <p (xjp)J2 + ['¢ (x) + '¢ (xjp)J2, 

(J)(x.-r)= {,;z+<p[p-1 (x+w*/'t)] + <p(x)}2 

-i- {'¢ [p-1 (x + w*jT)] + '¢ (x)}2 , 

F(x. ,;) = <p (x) [<p (x + w*jr:)- <p (x)] + '¢ (x) ['¢ (x + w* j,;) 

-'ljl (x)], 

F' (x, 1:) = <p (xjp){<p [p-1 (x + w* fr:)] - <p (xfp)} 

+ ¢ (xjp){'ll' {p-1 (x + w* fr:)] - '¢ (xfp)}, 
00 X 

I(J (x) = (2n)-'f, ~ e-11'/2 /:!!! :x = I - xe-x'/2 ~ et'i2dt, 
--<Xl 0 

'¢ (x) = (nj2)'1•xe-x'J2. (23) 

The functions cp ( x) and lf! ( x) are obtained by re­
duction of the real and imaginary parts, respec­
tively, of the function pR to nondimensional form. 
In this case we have used the fact that under the 
assumptions made in the work the quantity 11 is a 
small parameter. 

We note that, in spite of the smallness of 1], it 
is impossible for it to approach zero in the expo­
nent of the term Q, for then a logarithmic diverg­
ence arises in the integral over T at the upper 
limit. We can, however assume 11 = 0 in the 
terms Q' and Q". 

5. Further simplifications are possible if we 
take it into account that m/M = p2 « 1 in the 
case of the electron-ion plasma under discussion. 
It is not difficult to prove that this makes it pos­
sible to neglect the terms Q' and Q". In addition, 

we can write the quantity <I>(x, T) I DT(x + w*/T)i 2 

in the term Q in the form 

(-r:2 + J)2{[r;2 + cp(w*j-r:)F + [\);(w*/,;)]2}-l. 

Taking it into account that values of x of order p 
are significant in the integral, it is easy to see 
that when w*/T » p this substitution is exact. 
On the other hand, for w*/T « 1, both expressions 
are the same and are equal to unity. 

In this way, we get (after substitution of the 
variable x/ p = z and simplifications associated 
with the smallness of p ) 

00 

X \ e-z'/2 {[1'2 + I + cp (z)f _: ['); (z)J2}-1dz. (24) 
0 

We note that although the ratio of the masses of the 
electron and ion does not appear in Eq. (24), it 
would have been incorrect to consider the ions to 
be at rest from the very beginning, since they in 
fact take part in the screening of the electronic 
interaction. Were we to assume that the ions are 
fixed, then we would obtain an expression [in place 
of Eq. (24)] which does not contain the functions 
cp (z) and lf! (z) in the denominator under the inte­
gral in z. 

6. Let us consider some limiting cases. We 
shall write out the final results for the effective 
collision frequency, which is connected with the 
conductivity by the relation 

Rea (w) = (n 0e2/mw2 ) v ( w ). 

In accord with Eq. (19) 

2r nw 
v (w) =Yo nw sh ZT Q(w), 

where v0 = %1r (e2/T) 2 n0(.8T/7rm )1/ 2 and Q is de­
termined by Eq. (24). 

1) The frequency of the wave is much larger 
than the electron plasma frequency ( w * » 1 ) . In 
this case, the values T"' w* » 1 are important in 
the integral over T. Therefore we can write Eq. 
(24) in the form 

Here K 0 is the Bessel function of imaginary argu­
ment. Noting that TJW*/{2 = tiw/2T, we get for the 
collision frequency in the case under discussion: 

2T nw 'nw) _ 
V=V0 nrosh 2TKo( 2T, uJ;;'?ul0. (25) 

Within the framework of this limiting case, we 
can consider two frequency regions. Formula (25) 
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yields 

v = v,I~(4T Ainffi), T>nffi';pliffi0 ; (26) 

Y = v0 Vii(Tjnffi)'lz, liffi';;>T (27) 

(here A= e-Y = 0.56, y is Euler's constant). We 
note that in the last case the effective collision fre­
quency does not depend on the temperature. 

The absorption of electromagnetic radiation for 
w » w0 was considered in application to semicon­
ductorsPJ If the expression obtained in the papers 
cited is supplemented by consideration of inducetl 
radiation, it becomes equivalent to (25). 

2) The frequency of the wave is much less than 
the plasma frequency, w* « 1. In this case, we 
can set w * = 0 in Eq. (24). It is convenient to 
make the substitution ( T)T ) 2 = x. We have 

o:; 00 

Q - (2n)-'/, r e-z'i2dz ( e-x/4 xdx - J .) {x + Tlz [ 1 + q> (z))}2 + Tl' {'$ (z)}• 
0 0 (28) 

As 11- 0, this expression diverges logarithmically. 
To eliminate the logarithmic term we carry out in­
tegration over x by parts. We can then set 11 = 0 
in the integral term. We then obtain* 

Q = In (80/1']); 
00 

In B0 = In 2- f - (2n)-'/, ~ e-z"/2 f (z) dz, 
0 

f(z) =~In {[I+ IJl(zW + ('¢(z)]2} 

- 1 + q> (z) {arctg 1 + ~ (z) "'l 
'\j)(z) tp•z) 2f · 

Numerical calculation yields 

In 8 0 = - 0.29, B0 = 0,75. 

Thus, 

v = v0 In [0, 75 (2mT)'I•f1ix}'. (29) 

This result could, of course, have been obtained 
from the kinetic equation for the high temperature 
plasmaPJ We note that the numerical factor 
under the logarithm sign is approximately one 
third the value used by Spitzer.[S] 

3) In the intermediate case ( w * "' 1) numerical 
calculation is necessary, which it is convenient to 
carry out for the difference Q ( w ) - Q ( 0), since 
in this case the logarithmic singularity at the upper 
limit is eliminated as 11 - 0. The result can be 
written in the following form: 

v = v0 ln (B"' V2mTj1ix). (30) 

Calculation gives, for w = 0.5 w0, w0 and 2w0, the 
corresponding values of In Bw: - 0.29, - 0.30, 
- 0.48. As is seen, the value of the factor under 
the logarithm sign, obtained for w « w0 is shown 
to be valid in a much wider range of frequencies 
than one could have expected. 
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