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The value of the upper critical field Hc1 of superconducting alloys is derived for the case 
when the mean free path is small compared with the parameter ~ = v/ .6. of the Bardeen, 
Cooper, and Schrieffer theory of superconductivity. The temperature variation of Hc 1 is 
nearly linear, and the second derivative with respect to temperature is positive. 

IT is well known that superconducting alloys have +oo 
a number of anomalous properties. In particular, 1'1* (r) = (2rrf1 1g I ~ F: (r, r)dw, (3) 

the transition from the normal to the superconduc- -oo 

ting state in a magnetic field starts at some "upper" Ax= - Hy, Ay = Az = 0 (the magnetic field is 
critical field He 1 exceeding the thermodynamic taken along the z axis ) ; V ( r) is the potential 
critical field He, -the transition being a second energy of interaction with all the impurity atoms 
order phase transition. From the viewpoint of 
the Bardeen, Cooper, and Schrieffer (BCS) theory 
of superconductivity[1J this means that, at fields 
smaller than the upper critical field, the electron 
interactions through the phonon field lead to the 
formation of Cooper pairs and the appearance of 
a gap in the energy spectrum. As H- Hc1 from 
below, the gap tends to zero, and for H > Hc 1 

there are no solutions with a gap. Thus, the 
upper critical field of superconducting alloys is 
analogous to the critical field of supercooled, 
impurity-free superconductors (which has been 
considered by Gor'kov [2]), in the sense that it is 
also determined as the stability limit of the nor
mal phase with respect to the appearance of super
conducting correlations. In the present paper the 
value of the field Hc 1 for superconducting alloys 
is obtained for the whole temperature range, when 
the mean free path is small in comparison with 
the parameter ~ 0 = v/ .6. of the BCS theory. 

To begin with we consider the absolute zero 
of temperature. We write the equations of the 
theory of superconductivity in the form used by 
Gor'kovPJ When impurities are present and 
there is a constant magnetic field, they are 

V(r) = ~u(r-ra), (4) 
a 

where the sum is taken over all the impurity atoms 
randomly distributed throughout the lattice. 

We need to find the field at which a solution of 
equations (1), (2), (3) with vanishingly small .6. (r) 
and F~ ( r, r' ) first appears as the magnetic field 
decreases. The system is thus greatly simplified, 
since we can limit ourselves to first order terms 
in .6. (r) and F~(r, r' ). Then, instead of (2), we 
have 

{ 1 ( a . e \2 } p+ , -w+ 2m a;:-+ t 0 A(r); +V(r)+fl "'tr, r) 

+ i!'1• (r)Goo(r, r') = 0, (5) 

where Gw(r, r') is the Green's function of an elec
tron in the normal metal when impurities are pres
ent and there is a magnetic field; this satisfies the 
equation 

{w+ 2~(:r -i%-A(r)Y+V(r)+fl}G"'(.r, r')=O(r-r') 
(6) 

or 

{w+ 2~(a~' +i%-A(r')Y+V(r')+fl}G"'(r, r') 

= o(r-r'). 
Then, 

(6') 

{w+ 2!1 (! -i7A(r)Y+V(r)+ft}Gw(r, r') 

+ i!'1 (r) F: (r, r')= o(r-r'), 

F: (r, r') =- i ~ Goo(r", r') ?L.(r", r) 1'1* (r") dr". 

(1) Using (3), we arrive at the integral equation 

(7) 

+oo 

{ - w + J_ (ji__ -+ i ~A (r))2 + V (r) + fl} F: (r, r') 
2m dr c D.* (r) =- i (2nr1 1 g I ~ dw ~ Goo(r', r) G_w(r', r) 1'1* (r') dr'. 

-00 (8) 

-+ tD.* (r) G"' (r, r') = 0, (2) The asterisk signifies averaging over all possible 
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FIG. 1 

positions of the impurity atoms. The maximum 
field for which there is a non-zero solution of this 
integral equation is the upper critical field sought. 

The averaging of the Green's functions over the 
impurity atom positions is performed using the 
diagram technique developed by Abrikosov and 
Gor'kovC4, 5J and by Edwards.C 6J Each scattering 
of an electron at an impurity atom contributes a 
factor u ( q) exp ( iq • r a) to the expression for the 
Green's function in the momentum representation, 
where q is the momentum transmitted, and u ( q) 
is the Fourier component of the impurity atom po
tential. On averaging over ra, this factor becomes 
zero unless there are terms in the averaged ex
pression corresponding to scattering at the same 
impurity atom, but with q' = - q; in this case a 
multiplier I u (q)l 2 occurs on averaging, which is 
proportional to the scattering probability in the 
Born approximation with transmitted momentum 
q. It is thus necessary to pick out in pairs all 
scattering events at the same atoms. 

In the diagram each scattering is indicated by 
a cross; averaging is indicated by joining two 
crosses corresponding to scattering at the same 
atom by a broken line. In Fig. 1 several such 
diagrams are shown. On summing in diagrams 
with intersecting broken lines (for example, 
diagram d), the integration is over a region far 
from the Fermi surface, and they therefore make 
an insignificant contribution ("' 1/p0Z, where Po 
is the Fermi momentum, and l = VT is the mean 
free path ) , which can be neglected. Summation 
of the remaining diagrams leads, as usual, to an 
integral equation. 

Applying the technique described to the Green's 
function of a normal metal in the absence of a mag
netic field, we have 

G.,(p) = (ro- £P + i sign w I 2-rfl, (9) 

G.,(R) =- 2~ exp {il~ (Po- ~)sign ro- 2:}, (10) 

+ = ~~n 1 u ( q) 12 do (11) 

( n is the concentration of impurity atoms). In a 
homogeneous magnetic field along the z axis (if 

a b c tl f 
FIG. 2 

FIG. 3 

the curvature of the electron trajectories is small, 
which is the case in the fields of interest to us ) , 
we have 

Goo(r, r') = exp {- i (eH /c) (y + y') (x- x')} G"' (r- r'). 

(12) 

The product of two Green's functions is averaged 
similarly. The lowest order diagrams arising from 
averaging in pairs are shown in Fig. 2. The dia
grams with intersecting broken lines (for example, 
d and e) are unimportant; the broken lines joining 
crosses sited on one electron line (for example, 
diagram f) give complete Green's functions for 
this line. Thus, we must sum the "ladder" dia
grams shown in Fig. 3. We denote the sum of these 
diagrams by 

foo(r1 , r~; r 2, r~) = Goo(r 1 , r~)G-oo(r2, r~). (13) 

It is not difficult to write down the integral equa
tion for r w (r1, r!; r 2, r2). From this equation 
(which we do not write down because it is very 
cumbersome) it is possible to extract an expo
nential factor caused by the superposition of the 
magnetic field, and to transform the equation 
from coordinate to momentum space, i.e., to ex
press rw(r1,r1; r 2,r2) as: 
foo(r1 , r~; r2, r~)=exp{-i(eH12c)(YI+y~)(xl-x~) 

+ (y2 + y~) (x2- x~)} r oo(rl- r~; r2- r~). (14) 

We introduce the Fourier components 

f.,(r, r')=(2rtf6 ~~eiPr+ip'rT00 (p, p')dpdp'. (15) 

They satisfy the equation 

r"' (Pt• P2l = G"' (PI) G_"' (P2) 

+ ( 2~)" ~I u (q) 12 G., (Pt- m1 + 212) 

X G_w(P2- m2 + 212) foo(Pl + q- ml 

+ l1, P2- q- m2 + l2) 

x bH (m1 , 11)bH (m2, l2)dm1 dm 2 dl 1 dl 2 dq, 

where 

(16) 

bH (m, I) = (2c I eH)4 exp {i (2c j eH) (mxly- mylx)} 0 (mz) 0 (lz), 

oH (m, I) ->0 (m) o (I) as H---+ 0. (16') 

If we write 

f'(p, k, ro) = (2~)3 ~lu(q)\2fw (P+ ~+q, -p 

+ ~- -q) dq, (17) 
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then 

C.,(pr. P2) = Gw(P1)G-w(Pz) + ~ Gw(P1-m1 

+ 211) G_w(P2- m2 + 212) f' (i-'(P1- Pz + m2- m1 

+ l1 -12), P1 + P2- m1- m2 + l1 + )z, w) 

x 6H (m1, 11 ) 6H (m2, l2) dm1 dm2 dl1 dl2, 

and r' (p, k, w) satisfies the equation 

f' (p, k, w) = <2~ls ~I u (p- P1) 12 G"' (P1 +f) G-w(Pl 

-f) dp1 + (2~)3 ~I U (p- P1) 12 Gw (P1 + ~ 
-m1 + 211)0-w (P1- f + mz- 2b) 

x f' (p1-{-(m1-m2-11 + l2), k-m1-mz 

(18) 

+ 11 + 12 , w) 6H (m1, 11) 6H (m2 , 12) dp1 dm1 dm2 dl 1 dl 2 • 

(19) 
In this equation the product of two Green's func

tions decreases rapidly on departing from the 
Fermi surface. On the other hand, u (p- Pi) de
pends weakly on p - Pi• and changes significantly 
only when the argument is changed by a quantity 
of the order of the Fermi momentum. Therefore 
r' (p, k, w) also depends weakly on I p 1. By vir
tue of this we can integrate with respect to d I p I: 

(20) 

(the variables have been changed: mi + m2 = 1Ji, 
mi- m 2 = 2~i etc). Integrating now with respect 
to d~i and d~ 2 , we obtain a o-type function of 1Ji 
and 1)2, the width being, in order of magnitude, 
eH/cp0 = R!l (RH is the radius of curvature of 
the electron trajectories in the magnetic field). 
If 2w -pk/m + i/T and r' (p, k, w) change little 
on changing k by the order of R!l• we can inte
grate with respect to d1Ji and d1J2: 

[' ( k ) _ inmp0 ('I ( _ )l 2 1 + f' (Pt. k, ffi) do . ( 
p, ' w - (2n) 2 J u P Pl 2ffi- p1k 1 rn ~ i IT 1 21) 

The applicability of this equation is limited by 
two conditions: 

()f'(p, k, w)/dk~f'(p, k, w)RH, (22) 

VT~RH; (23) 

the second is satisfied for the fields considered; a 
study of Eq. (21) shows that the first condition is 
violated when k ~ Rfl. Such values of k corre
spond to distances ~ RH at which the quasi
classical approximation for the Green's function 

in a magnetic field becomes invalid. In the prob
lem under consideration, as we will see below, 
smaller distances are important, in fact, distances 
..... ...J c/ eH = ...J RH /p0 • 

By a similar line of reasoning, it can be shown 
that, when conditions (22) and (23) are satisfied, 
we have, instead of (18): 

f"' (Pr. P2) 

= Gw (p1) G_"' (P2) [ 1 + f' (+ (p1- P2}, P1 --i- Pz, w)) J. 
(24) 

We return to the initial equation of the problem 
[Eq. (18)], rewritten as: 

~· (r) = \ exp {- i e~ (y + y') (x- x')}K (r- r') ~· (r')dr'. 
• (25) 

From (13)- (15) and (24) we obtain, using the 
above-mentioned properties of r' (p, k, w) and 
of the product of two G functions, 

00 

K(r-r') = -iigj:rC1 ~ fw(r-r', r-r')dw 

or 

0 
:o 

= -itgl \' dw•\·eik(r-r'JG (p--~)G- (_p_j__~.) 
(2n)" :rt: .\ • "' \ · 2 "'\ ' ~ 

0 

X[l-i-- f'(p, k, w)]dp& 

co 

(26) 

K (R) = - i i g lmpo \' dw \ etkRk dk\ 1 -:- f' (p, k, ffi) do 
(2n)• R ;) ) . 2ffi- pk! m-, 1 1 T ( 2G') 

K (R) = - ~J~J m;oT ~ dw ·r r 0 (k, w) e'kRk dk; (26") 
u -co 

r (k ) l -~· f' ( k ) d i \' 1 -,- r· (p, k, u>J 1 O 0 (1) =c -;-- p, 1 W 0 =-;-- \ ~ k / • . 1 ( {}, 
·LT. •!:rt:,-ffi-p nz-.-l T (27 ) 

The last equation can be obtained by integrating 
both parts of (21) with respect to do (i.e., with 
respect to the directions p), using (11). 

Equation (21) can be solved in the limiting case 
k « z-i. Then 

(28) 

1 11//lflu ·~· . ( ) , ., ( l n) d 
- =c· ·(-;;-)2 J U P- Pt 1- --COS IJ 0. 
r:, r _1( • 

(29) 

Whence, for R » l, we have 

(30) 

It is of interest to compare this quantity with 
the behavior of K (R) at distances small in com
parison with the mean free path. In this limiting 
case values of k » z-i are important. For such 
values of k the behavior of r' (p, k, w) is like 
(kl )-i ln (kZ ), and it can be neglected in compari
son with unity. Then 
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and for K ( R) we obtain the same equation as for 
an impurity-free metal: 

mpo I g l 1 
K (R) = (2it)" R.". (31) 

We consider the case of a heavily alloyed super
conductor, when the mean free path is much smallei 
than the parameter ~ 0 of the BCS theory. As we 
shall see below, there exists in this limiting case 
a solution of (8) or (25), which changes significantly 
in distances of the order ~ » l. The eigen
functions of this equation, which change rapidly, 
correspond to small values of the magnetic field. 
Since we are interested in the maximum field for 
which a solution exists, 6. * ( r) can be considered 
constant at distances of the order of the mean free 
path. Then, taking into account the behavior of 
K (R) at large distances, we rewrite (25) as 

t;' (r) { 1- ~ ( K (r- r')- (2rr~"l~o_l!;, I" )dr'} 
_ mp0 1 g! \ exp {i~H (y + y')(x- x') I c} Li' ( ')d • (32) 
- 4rr3 ) i· r -· r' r:i r r . 

The right- and left-hand sides of this equation 
diverge differently for small values of R. This is 
due to the fact that we have not taken into account 
the cutoff of the interaction between the electrons 
in Bardeen's model Hamiltonian at Debye energies. 
In our problem this implies that the integration 
with respect to dp in (26) is performed not be
tween infinite limits, but from Po- 2w/v to Po 
+ 2w/v. In (26') there appears then in the expres
sion under the integral a multiplier 

1 I w- w + pk I 2m - i 1 21: 
~ n - ' 
rtt - w - w -~- pk I 2m - i 12T 

The expression (31) for K (R) at small values of 
R is valid only for R » v/w, and the volume in
tegral of K ( R) will converge for small values 
of R. 

Performing now the volume integration in the 
left-hand side of (32) to I r- r' I = E( E- 0 ), we 
have 

, ( T1rv2e2 ) 
t; (r) In 3r•t~.oe• 

1 \' exp {ieH (y + y')(x -:-_·'J I c} 11~ ( ') d • 
= 2rr ~ I r - r' i" r r . (33) 

lr-r't;?z 

Here, y = exp C, where C is Euler's constant. 
An analogous equation was studied by Gor'kovPJ 

He showed that the solution of this equation can be 
obtained from the particular solution for 6-*(r ), 
depending only on y. In this case 

t; (y) In ~e2 ., ( 3'Y'tl. ) 
Ttrv 

exp {- eH I y2 - y''ll c} t;" (,y') dy'. 
ly-y' I 

(34) 

Using a variational method [ exp ( - ay2 ) is taken 
as the varied function] we obtain the maximum 
field at zero temperature (which is attained when 
a= eH/c): 

(35) 

We introduce the constant K of the phenomeno
logical Ginzburg-Landau theory,[s] defined as 

X= V22eHc62 Inc 

as T - T c (He is the thermodynamic critical 
field, o is the penetration depth). In the limiting 
case considered,[5J 

, = ___2_ 11Z(;_( 2nm. 7.,. (3))'/, 
X ? " 5 "' • _n- eTtr Po . 

The theoretical value of the thermodynamic 
critical field of a pure metal at T = 0 is 

Hco = t;o Y2mpof:rt. 

The ratio of the two critical fields can be ex
pressed in terms of K: 

;r2y 
-=="= x = 3.03x. 
2 f7~ (3) 

(36) 

The upper critical field can be expressed in 
terms of the critical temperature T0 , the conduc
tivity of the normal metal at low temperatures a, 
and the coefficient y in the linear thermal capac
ity relationship: 

0 ec"'T 
H - --"-- -' _c 

ClO - 2rt Gk 1 (37) 

If at T = 0 the penetration depth 60 » l (when 
60 = (2w)-1 x c-../n/a6.0 , (cf.C4J), then 

(37') 

For non-zero temperatures the corresponding 
thermodynamic technique must be used.[I,B] Then 
there will appear in all the formulae sums with 
respect to wn = wT ( 2n + 1) in place of integrals 
with respect to dw. 

At large distances the kernel KT(R) will, in
stead of (30), be 

(38)* 

At finite temperatures Eq. (34) becomes 

*th =tanh. 
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~ Kr(y, y')!}.*(y')dy', 
y-y'[?< 

00 
T v" ) 

Kr(y, y') = ~ th ( ~T lJ 
0 

I exp{- i y- y' I [((y + y')eH I c) 2 - 2i'1]]'1•} d 
X m . , TJ. 

[((y + y') eH f c)2 - 2t1)] 1' 
(39) 

Again we use a variational method, choosing 
~* (y) as exp (- ay2 ). The maximum value of 
the magnetic field is attained when a = eH/ c, and 
is determined by the solution of the equation 

00 

\' d1] . 1 1 ) 
F (x) = 2x J rJ+ 2x( 1]- SliT] (40)* 

0 

( F ( x) - 2x In 2 as x - 0 and F ( x) - In x + 1r2 I 8x 
as x- oo). 

It is convenient to write this equation introduc
ing from (35)- (37) the critical field Hc 1o at 
T = 0: 

ln(Hc1o/Hcl)=F(THClo/TcHC1)· (41) 

For low temperatures ( T « Tc) 

HCl T HCl T ) ( ) -rr- = 1 - T 21n 2, ~ = ~ 1- T 2 ln 2 3.03x. 42 
ClO C · C 

Close to the critical temperature ( T c - T « Tc ) 

H T 8 4t · T. 
_E_=Il-T)-.--, Hc=-y (1-y)Hco, 
HClO \ c 1t 14\; (3) c 

HCl -.!')' 
H= r 2x, 

c 
(43) 

which agrees with the result given by the phenom
enological Ginzburg-Landau theory.C9•10J This is 
natural, since for Tc- T « Tc the integral equa
tion (39) can be transformed into the differential 
equation of the same problem in this theory. 

The variation of the upper critical field on tern
perature is shown in Fig. 4. It is clear from the 
graph that the variation is almost linear, the curve 
being convex from below, i.e., 82Hctf8T2 > 0, in 

FIG. 4 

*sh =sinh. 

FIG. 5 

f 
T/fc 

distinction from the temperature variation of the 
thermodynamic critical field, which is almost 
parabolic and has 82Hc /8T2 < 0. 

It should be remembered that the variational 
principle gives a somewhat reduced value of the 
upper critical field, and the error increases as 
the temperature is lowered, so that, in fact, the 
curvature ought to be somewhat greater than that 
shown in the figure. Unfortunately, there are no 
experimental data on the temperature variation of 
the upper critical field throughout a wide temper
ature range, with which it would have been pos
sible to compare the results of the present work. 
Experiments close to Tc give a trivial linear 
variation. For an accurate comparison of the 
theory with experiment it is necessary to know 
the mean free path of the electrons, i.e., the re
sidual resistance of the specimens studied. 

Figure 5 shows the temperature variation of 
the ratio HctfHc· 

In conclusion I am grateful to L. P. Gor'kov 
for useful discussions and comments, and to 
L. D. Landau for discussing the results obtained. 
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