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An expression is found for the complex dielectric constant of a dilute totally ionized plasma;
the expression is accurate to quadratic terms in the number of particles per unit volume and
applies for frequencies much higher than the electron Langmuir frequency. An isotropic
plasma and a plasma in a magnetic field are considered. In the latter case the applied fre-
quency is assumed to be greater than the Langmuir frequency, but can be greater or smaller
than the gyromagnetic frequencies of the plasma particles.

].. The present communication is concerned with
the high-frequency dielectric constant of a plasma.
Specifically, we are interested in the frequency re-
gion in which the applied frequency w is much
higher than the electron Langmuir frequency wig
= vV 4me?Ng/m . On the other hand, we shall as-
sume that the frequency is much lower than the
frequency wmax = (kT)3%2 (2m)‘1/2/|eie |. To de-
scribe a plasma under these conditions we find it
convenient to use the kinetic equation for rapid
processes given earlier by the author.[]

Under the conditions given above it is well-
known (2] that the imaginary part of the dielectric
constant of an isotropic plasma must be modified;
the correction is quadratic in the number of par-
ticles per unit volume and exhibits a frequency
dependence of the form w3 1n (w/wma_x). Below
we obtain the corresponding real correction, which
exhibits a frequency dependence of the form w™3 x
sign w. Finally, we obtain the correction to the
dielectric tensor of a plasma in a strong magnetic
field when neither the applied frequency nor the
electron (ion) gyromagnetic frequency are small
compared with the electron Langmuir frequency.

2. We find the dielectric constant of the plasma
through the use of the kinetic equation for rapid
steady-state processes. For a plasma in a spa-
tially uniform alternating electric field E and a
fixed magnetic field B this equation is:[1]
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where ey, mg, Ty, Vg, and py are respectively
the charge, mass, coordinate, velocity, and momen-
tum of a particle of type a; Qg = egB/mgc is the
gyromagnetic frequency; N, is the number of par-
ticles of type « per unit volume and, Uaﬁ(r)

= egeg /r.

Equation (1) has been obtained under the as-
sumption of a weak particle interaction and does
not apply for small impact parameters. In this
connection, in integrating over the impact param-
eters below, we introduce a cutoff at ppjp. On
the other hand we have not considered shielding
of the Coulomb interaction at large distances in
Eq. (1). Equation (1) may not be applicable to an
analysis of collisions at high impact parameters
in sufficiently slow processes, in which case we
must introduce a cutoff at pmax.*

3. We first consider an isotropic plasma with
no fixed magnetic field. We neglect spatial dis-

*If collisions are neglected the following relation holds:

fo Pe [t 47, &, pgls Ry (L7, £, Py 1ol £+ T) = o (Pgs Tar B,

and allows us to transform the arguments of the functions in
the right side of Eq. (1).
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persion in the dielectric constant, assuming the
particle distribution to be uniform in space. As-
suming a small departure from the Maxwellian
distribution fg’) and linearizing the kinetic equa-
tion, taking account of the fact that 6f, is propor-
tional to the electric field, which is assumed to

be weak, we have
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In solving Eq. (4) we assume that the collision
integral is small. If there is a periodic time de-
pendence (e 19t) the inequality w > vegr must
be satisfied, where vggf is defined below. In the
first approximation
; e, Ev,

5T o
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Substituting Eq. (5) for 6f in Eq. (4), we have as a
second approximation
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An expression for the current density can be ob-
tained from Eqgs. (5) and (6)

i = YeaNe {dpavadi, (7)
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and can then be used to find the complex conductiv-
ity tensor 0jj (jj = 0jjEj) or the complex dielectric
tensor €} = 0jj + 4mioj; /w. For the isotropic
plasma being con&udered here these tensors are

diagonal and, from Egs. (5) — (7), we have
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Where kmax pmin = KT/|eqeg| while kpyin
= pmax ~ rD (rp is the Debye radius).

If terms containing positive powers of the elec-

tron-ion mass ratio are neglected in the right side

—Q0

of Eq. (8) and if it is assumed that only one type of
ion is present, we have
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Keeping in mind that kp,,x > kpin and also that
these quantities are determined to an accuracy of
order unity, we can write Eq. (10) in the form
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The last expression for F” leads to a small cor-
rection (proportional to w™2) in € (w). Hence,
w} o changes by an amount Aw},, where

_4_]/2? (ee;)*N; 1
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Equation (12) for F’(w) leads to the usual effec-
tive collision frequency, which then yields the fol-
lowing expression for the dielectric constant: [2-4]
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At frequencies much greater than the electron
Langmuir frequency (w > wy,q) we have from
Eq. (11)
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v = 1.781 is the Euler constant. Substituting (15)

in (9) we have
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while vggp(w) is of the form known from the theory
of absorption of radio waves in interstellar gases: L21
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The quantity vegp differs from wggr by the large
logarithmic term. Since the logarithmic term de-
pends on the choice of kpy g%, there is some ques-
tion as to the usefulness of keeping the term pro-
portional to weff. However, veff appears in the
imaginary part of the dielectric constant while
weff appears in the real part, so that we are jus-
tified in keeping the term proportional to wggs.

There is an important difference in the correc-
tion to the real part of € (w) when w >» wy,e and
W K we- The absolute magnitude of the correc-
tion is smaller in the second case than in the first
(low frequency ); however, a new dependence on
frequency arises in the region w > wy and in
principle, makes it possible to observe the cor-
responding correction. The difficulty of an ob-
servation of this kind is due to the necessity for
satisfying the condition w < (kT)32m™12/|ee; |.
For example, in the expression for the refractive
index
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the third term (~ w™*) is always greater than the
fourth, which is proportional to w3, Thus the cor-
rection will appear only when the frequency depend-
ence of the refractive index is determined with very
high accuracy. We note that the fourth term of the
right side of Eq. (19) is smaller than the third, but
greater than the fifth, if the following condition
holds:

N T m™ <o <€ («T)" m™" [ | ee; .

This frequency range is rather wide since it is
given by the relation | ee; | Né/s < kT.

4. We now consider a plasma in a fixed mag-
netic field. In this case the linearized Kkinetic
equation for weak departures from the Maxwellian
distribution can be written in the form
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Here, P° and R? are given by Egs. (2) and (3) if
the electric field is set equal to zero.

When the field is periodic in time (e-iwt)
Eq. (20) can be solved by perturbation methods
by taking the right side to be small, so long as
the condition |w? + Q% | > viff is satisfied. We
assume below that this condition is satisfied. Then,
assuming that the collision integral can be neg-
lected, we have
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Here, egjy is a completely antisymmetric tensor.
Using Eq. (21) we obtain the following equation for
the second approximation correction to the non-
equilibrium part of the distribution function:
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In the case being considered (steady-state periodic
process) the solution of this equation can be writ-

ten in the form

t
f(O) f(o)

, ad
WWuhngmﬁmtrﬁmm
3 a
U — '
X zB(]ra l'a])

¢ 9
" S dv e—iot {
ort orl

e —o0

—w&m—mu%mw[
— ag Asj (o, QB)] e—iot" Fo,

Uag (| RS (7, Pe [t

S] ((0, a)
(24)
To find the complex dielectric tensor we substi-

tute (21) and (24) in (7) and integrate over momen-
tum and time (t’). In particular, we assume that
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Assuming that the plasma contains electrons and
only one ion species and neglecting corrections of
the order of the electron-ion mass ratio, we have

g () = e(? my del? + 651(»,}-'), 27)
where Gi(g’h) is the Hermitian part of the dielectric

tensor, obtained if the collision integral is neg-
lected completely
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while 6e(h) and 56(3) are respectively the Hermi-

tian and ant1 Hermitian parts of the dielectric ten-
sor, obtained when the collision integral is taken
into account:
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The real parts of the functions F; and F, make
contributions to the anti-Hermitian part of the di-
electric tensor while the imaginary parts appear
in the Hermitian part.

At frequencies much higher than the electron
gyromagnetic frequency (w > SQg)

Fi(0) =2r' F (0), Fy(0)=0. (33)
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Thus, in this frequency region and when w > wje,

we have

B
LpThE. (34)

2
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If wand Q¢ < wre, then 6¢jj is of the same form
but »{4) and wes must be replaced by v and
Awle respectively. We assume below that the
applied frequency is greater than the electron
Langmuir frequency. In particular, this assump-
tion allows us to write kpyin = 0 in Egs. (30) and
(31).

We first analyze the Hermitian part of the cor-
rection to the dielectric tensor, for which purpose
we must consider the imaginary parts of the func-
tions F; and F,. Because the integrands of the
corresponding imaginary parts do not have singu-
larities at small 7 we can set kyax equal to in-

finity in the appropriate formulas. Taking Q¢ < 0,
we have
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To obtain relatively simple expressions we con-
sider several limiting cases assuming at all times,
however, that the gyromagnetic electron frequency
and the frequency w are small compared with
wmax = (KT)¥2m=1/2/| eej| . At the highest fre-
quency w, the magnetic field has no effect on col-
lisions; and the situation is given by Egs. (33) and
(34). Hence, in the following we assume that Q¢
> w.

If this inequality is satisfied the basic contribu-
tion in the integrals in (35) and (36) comes from the
region ¢ » 1 in which 3 (¢) is small compared
with unity. We must distinguish three regions of
large values of £. First, the region 1 < &

« Ymj/m , where
H(E) =~ E2sin?E.
Second, the region defined by the inequality

(38)

Vm[m<E<|em;|em]|,

where
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Finally, the region ¢ > |emj/ejm |, where
1 2 m; é;
W(ﬁ)f’\‘/’g -eg-,,jSlﬁ(?;g—; E)y (40)

Since y (£) is small, we obtain immediately from
Eq. (35)

Fi(0) = 4 signo. (41)
The situation is somewhat more complicated for
the function Fj(w). Here, corresponding to the
three ranges of values of ¢ and the corresponding

values of the function ¥ (£), we have
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Equations (29), (41) — (44) allow us to write the
Hermitian part of the correction to the complex
dielectric tensor in the following form:
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We now consider the anti-Hermitian correction.
As in the analysis of the imaginary parts of F,
and F, we can write k5% = * in the real part
of Fy. Then, Fj(w) assumes a form similar to
(36) with the difference that the cosine appears
in place of the sine. When w <« g, we have

o= 2 (52 gy

(40), we have from

48)

Corresponding to Egs. (38) —

Eq. (48)
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Fi(0) = o {(m ") +InZin i

o< Q. (51)

We cannot write kyax = © in Fi{(w). How-
ever, since the integrand in Eq. (30) is independ-
ent of magnetic field when 7 <« 1/Qe, an expres-
sion for F{(w) can be written that applies for
both w > Qg and w <« Qg:
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In the case of immediate interest we have
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Then, using Eqgs. (29), (49) — (51) and (53) we can
write an expression for the anti-Hermitian part
of the complex dielectric tensor
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A comparison of Eqs. (54) — (59) with Eq. (34) in-
dicates that in strong fields there are two effective
collision frequencies or relaxation times.* If w

~ wLe in Eq. (67) this equation contains a higher
order term which, together with Eq. (565), leads to
an expression for the transverse relaxation time;
the transverse relaxation time gives the coeffi-
cient for electron-ion diffusion across the mag-
netic field.[*

*Equation (20) of(!] can be regarded as an interpolation
formula which gives Egs. (18) and (15) of the present work as
lmiting cases. When w ~ Qe the approximate kernel of the
collision integral, which corresponds to Eq. (17) of, [} is a
poor approximation.
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In all formulas in this paper we have assumed
that the maximum frequency (wpyx) is deter-
mined by the limit of applicability of perturbation
theory. However, if this restriction does not hold
and instead the range of applicability of our for-
mulas in the region of small impact parameters
in determined by quantum effects in the kinetic
equation (1), which have been neglected, then
wmax is replaced by (kT/h).

I am indebted to V. L. Ginzberg for his interest
in this work.
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