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A kinetic theory is developed for a paramagnetic gas in an arbitrary magnetic field. A trans­
port equation is derived with account of rotational degrees of freedom, discreteness of the 
magnetic momentum, and dependence of the scattering cross section on the angle between the 
direction of the molecular moment and the direction of the relative velocity, which is of de­
cisive importance for the problem under consideration. With the thermal conductivity prob­
lem taken as an example, a general method for solving the kinetic equation is developed. An 
explicit expression for the thermal conductivity tensor in a magnetic field is deduced and 
comparison is made with the experimental results on the Senftleben effect. 

1. INTRODUCTION 

As is well known, the thermal conductivity of a 
paramagnetic gas depends on the magnetic field. 
This effect was first observed in oxygen by Senf­
tleben,[1] and later in another diatomic gas posses­
sing paramagnetism, namely NO. In the Thirties 
a whole series of experimental papers was pub­
lished, devoted to this effect, principally in oxy­
gen.C2J It was found simultaneously that the viscos­
ity coefficient of a paramagnetic gas also depends 
on the magnetic field. [3] 

The experimental researches have shown that 
both the thermal conductivity and the viscosity 
decrease in a magnetic field, and this effect has a 
universal dependence on the ratio H/p at fixed 
temperature. At low values of H/p a quadratic 
dependence of this effect on the ratio is observed, 
and with further increase of H/p saturation sets 
in. Special experiments were also used to show 
that the variation of the thermal conductivity de­
pends on the angle between the temperature grad­
ient and the direction of the magnetic field. 

A first attempt at a theoretical analysis was 
made by Laue.[4J Disregarding the nature of the 
effect, Laue introduced in purely formal fashion 
the hypothesis that the mean free path depends on 
the angle between the direction of the molecule 
velocity and the direction of the magnetic field. 
Treating subsequently the transport phenomena in 
terms of the mean free path, he arrived at a 
phenomenological relation which contained in ex­
plicit form only the dependence on the angle be­
tween H and \7 T. 

In another paper, Zernike and Van Lier[5J* cor­
*The authors are grateful to A. Sazykin who called their 

attention to this paper. 

rectly related this effect with the nonsphericity of 
the molecules. They treated the transport phenom­
ena (thermal conductivity) in the mean-free-path 
approximation. 

In the present paper we use the kinetic equation 
for molecules with rotational degrees of freedom 
to develop a theory for transport phenomena in a 
paramagnetic gas situated in a magnetic field; this 
theory will enable us to establish all the funda­
mental laws. 

2. KINETIC EQUATION FOR A PARAMAGNETIC 
GAS IN A MAGNETIC FIELD 

The effect of the magnetic field on a neutral 
paramagnetic gas reduces to polarization and 
precession of the magnetic moments of the mole­
cules. At room temperature and reasonable mag­
netic fields, the polarization is very weak. Indeed, 
if H ;S 104 oe, then J..toH/kT :S 10-3• The polariza­
tion thus plays no role in kinetic processes, and 
the effect in magnetic fields can be connected only 
with precession. 

In the case of nonspherical molecules, the in­
teraction (scattering cross section) will in general 
depend on the relative orientation of the molecules. 
The presence of angular-momentum precession in 
the magnetic field causes the orientation of the 
molecule relative to the direction of its velocity 
to vary continuously if the motion between two 
collisions is free. Since each orientation can, 
roughly speaking, be set in correspondence with 
its own scattering cross section, the precession 
results in an effective increase of the statistical 
weight of the larger cross sections. Consequently 
the kinetic coefficients will in general always de­
crease in a magnetic field. Obviously, in this 
case the decisive quantity is not J..toH/kT, but the 
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ratio of the characteristic precession time to the 
free path time. The ratio of these times can be 
made without difficulty either much greater than 
unity or much less than unity. 

It is clear from the foregoing that to describe 
the kinetic phenomena in a paramagnetic gas it is 
necessary to examine the kinetic equation for 
molecules having rotational degrees of freedom. 
We confine ourselves to an examination of linear 
(particularly, diatomic) molecules and to a tern­
perature interval in which the rotational motion 
can be regarded classically and the vibrational 
degrees of freedom are not yet excited. In this 
case the kinetic equation can be written in the form 

at a . • · at J at + vvf + aM (fM) = l at co.t (2.1) 

The form of the left half of (2.1) is connected with 
the assumption that the distribution function de­
pends on the rotational degrees of freedom only 
through the angular momentum M. In other words, 
we assume equiprobable distribution over the 
angle that characterizes the position of the mole­
cule in a plane perpendicular to M (see[s] for de­
tails). 

For a complete determination of the left half of 
(2.1) we must determine M. As is well known, . 

M =[!£H), (2.2)* 

where 1J is the magnetic moment of the molecule. 
However, the magnetic moment of paramagnetic 
molecules is of purely quantum nature, connected 
with the uncompensated spin or orbital moments 
of the electron shell. Accordingly, the value of 1J 
must be determined from a quantum-mechanical 
analysis as the limiting value corresponding to 
large rotational quantum numbers. 

Let the magnetic field be limited in magnitude 
so that the Zeeman splitting is small compared 
with the fine structure of the molecular spectrum. 
Then the magnetic moment can be determined by 
averaging over the unperturbed state of the mole­
cule. In this case 

Y =flog/It. 

(2.3) 

(2.4) 

Here Jlo is the Bohr magneton, g the gyromagnetic 
ratio, and M the total momentum of the molecule. 
In considering large rotational quantum numbers, 
we shall neglect the difference between the total 
and rotational momentum of the molecule. 

For diatomic and polyatomic linear molecules, 
the spin-axial interaction energy is always small, 

at sufficiently high temperatures, compared with 
the energy of rotational motion (case b considered 
by Hund[7J). We confine ourselves to this case only. 
Then, assuming that the spin of the molecule dif­
fers from zero, we can show that when M »li we 
have 

(2.5) 

where a runs through 2S + 1 values 

:>=-S, -S+ !, .. . ,S, (2.6) 

(Sis the spin of the molecule). In (2.5) we have 
neglected terms of order M- 2, and consequently, 
in particular, the contribution of the orbital mo­
mentum drops out. 

It is clear that the distribution function in (2.1) 
should depend on the discrete variable a. The last 
term on the left in the kinetic equation (2.1) is now 
written in the form 

y(c;)[MH) a~ f[r, t, v, M, :::;). (2.7) 

Assuming that A./L « 1 and T co/ T « 1 (A. and 
Tcol are the mean free path length and time; L 
and T are the characteristic length and time for 
the changes in the macroscopic quantities), we 
seek a first-approximation solution of the kinetic 
equation (2.1) in the form 

t c c j(O) [ 1 -:- X], (2. 8) 

where f(O) is the local Maxwellian distribution 
function 

. . m )'/, 1 . e 
(\OJ =c n ( 2nkT 4nlkT exp i - kT I . (2.9) 

Here 

(2.10) 

where v0 ( r, t) is the macroscopic velocity and I 
the moment of inertia of the linear molecule. 

In (2.9) and what follows we neglect the multi­
plet-splitting energy (coupling of type b!) and the 
energy of the magnetic interaction ( JloH/kT « 1 ). 
By virtue of this, in particular, f(o) is independent 
of a. 

The conditions imposed on the total distribution 
function are 

Here 

~fdr* =' n, ~ fedr* =-%- nkT, 

~ fudi" ~-c 0, ~ {Mdr* = 0. (2.11) 

(2.12) 
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(The difference between the phase volume of the 
momentum and the ordinary volume is connected 
with the linearity of the molecule). 

We note that in (2.11) and (2.10) we have as­
sumed the absence of a macroscopic angular mo­
mentum. 

Taking (2.9) into consideration, we arrive at the 
following homogeneous conditions for x 

~ t<oi xdf* = 0, 

~ f(O) ';( U df* = 0, 

v(O)xedf* = 0, 

~ f<0lxMdf* = 0. (2.11') 

Let us substitute (2.8) in (2.1). Using the con­
servation laws and retaining the first non-vanish­
ing terms, we obtain 

·<ol {1 ~ - _2_ \ 1 T -L ..!!!:...._ I . - _l 6. 2\ { \ kT 2 ) UV n , :2kT \ U1Uk 3 tku ) 

"(' avok -'- OJOi - ~ O·k OVot ) 
' , oxi · oxk 3 1 ox1 

_, u:;-- ; k~) ~::} 
+ r [MH] :~ f<ol = JcJx,), 

Jcot~'X) =~to) f~o) (x' +'X~- 'X- Xt) \Fdf'~dr'' dr~·. (2.13) 

(By writing the collision integral in this form we 
imply that the collision probability W is an even 
function of the momenta of the colliding molecules.) 

The form of the function W is not known in the 
general case. We start from the assumption that 
the nonsphericity of the molecules is small, and 
that it is difficult for the momentum of the mole­
cule to change upon collision. Then the effect of 
nonsphericity manifests itself principally on the 
dependence of the cross section of the angle be­
tween the momenta of the molecules and the direc­
tion of the relative velocity. It is clear that this 
dependence should not change if M is replaced by 
-M, and the approximate expression for W can 
be written 

from the necessary symmetry of W with respect 
to M and Mt. 

In writing out (2.14) we have assumed that the 
momentum of each molecule remains unchanged 
in the collision and that the interaction is inde­
pendent of a. (In addition, it is assumed that A. 
does not change with variation of g2 and M2.) 

Such an interaction model is quite satisfactory in 
investigations of the thermal conductivity, first 
viscosity, and diffusion as functions of the mag­
netic field, but needs to be made much more pre­
cise for an analysis of second viscosity. 

3. THERMAL CONDUCTIVITY OF PARAMAG­
NETIC GAS. THE SENFTLEBEN EFFECT 

1. In the thermal conductivity problem, the ex­
pression for x can be represented in the form 

z =- Y2kT/mx v ln T. (3.1) 

The corresponding kinetic equation is written 

- Ui (u2 -[- ,1\,12- 7/2) f<ol + yf<ol [MH] ay_;jaM = fcot('Xi) (3. 2) 

Starting from this expression, we shall take u 
and M to mean everywhere dimensionless quan­
tities that differ from the preceding quantities by 
the factors .J m/2kT and .J 1/2IkT, respectively. 

We expand the function X in irreducible tensors 
made up of u and M: 

X, (u, M, a) 

= ~ Tfk~ .. ko+q [uk1 ••• Uk 0 ] [.H"o-'-t •.. . V11,0+,J, (3.3) 
o. a 

where the square brackets denote the correspond­
ing irreducible tensors. The expansion coeffi­
cients (3.3) are functions of u2, M2, and of the 
index u, and can in turn be expanded in the ortho­
gonal polynomials 

Tfff, .. "o+q = ~ Tf"~~~.ko+qSl/,~+ 1 (u2) sl;~q(M2), (3.3a) 
sl 

W df'*dr~· = wgda, (2.14) where shm) are Sonin polynomials of index n. 
/ A 

:.IJ = 1 ~A. [P2 (cosgM) + P2 (cos gM1 ) 

where g and g are the relative velocities before 
and after collision, du-differential cross section 
of elastic scattering of the molecules neglecting 
nonsphericity, and P 2 is a Legendre polynomial. 

The form of the term in the square brackets is 
connected with the equality of the probabilities of 
the direct and reverse transitions, which follows 
from the principle of detailed balance, and also 

The coefficients in the expansion (3.3a) depend 
only on the discrete variable u. 

From the form of (3.2) it follows that X is an 
odd function in u and an even function in M. This 
means that the only nonvanishing coefficients in 
(3.3) are those with odd p and even q. 

The conditions (2.11') leads to the single rela-
tionship 

Let us write down the equation for the heat flow 
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Using (3.1), (3.3), and (3.3a) we obtain for the 
thermal conductivity tensor, in the general case, 

x· = k (2kT!m) (~ f'lOlO --'- _1c__ T-toOl) fit. , , t1 kl I 2 kl ' 

- 1 

Here 

T=2S+1L;T(a). (3.4) h,.k = e,.kzHz!H, 
a 

Thus, the thermal conductivity tensor is deter­
mined in terms of two coefficients of the expan­
sion (3.3) averaged over a. 

Let us proceed to find the approximate solution 
of (3.2). For this purpose we confine ourselves in 
(3.3) to terms with p = 1 and q :s 2, and in (3.3a) 
we retain the first nonvanishing terms. Then 

(3.5) 

£(a)= n CVn~-t0 f20 Y 2kTI) Ha, (3.9) 

where fild is a unit antisymmetrical tensor. 
In the calculation of the term with the magnetic 

field in (3.8) we took account of the dependence of 
the coefficient on the rotational momentum M [see 
(2.5)]. An explicit expression for A a(3 and Ba(3 

is given in Appendix A. 
3. We present the solutions of (3.8) in the form 

T"- =X"+ Y"(H), (3.10) 

where xa is independent of H and ya ( 0) = 0. 
(3.6) We consider first the case H = 0. We seek the 

tensors xa in the form 
(3. 7) 

If we substitute (3.3) into (3.2), we can readily 
verify that the only components of (3.3) contribu­
ting to the term containing the magnetic field are 
those with q ;r 0. On the other hand, a detailed 
analysis shows that an account of the terms with 
q > 0 and p > 1 in (3.3) yields for the thermal 
conductivity corrections that are proportional to 
the nonsphericity parameter raised to the power 
q + 2 ( p - 1 ). Since the sphericity is assumed 
from the very outset to be small, the limitation 
(3.5) concerning p and q is of an obvious charac­
ter [the approximation (3.5) is actually quadratic 
in A]*. 

The fact that terms with high values of s and 
t are discarded in (3.5) is not connected with any 
explicit smallness parameter. Nonetheless, as is 
well known, it usually turns out that these terms 
are numerically small. We shall later on (Sec. 4) 

refine (3.5), taking account of the terms of next 
higher order in t for q = 2. 

2. To find the coefficients in (3.5) we multiply 
(3.2) by each of the functions (3.6) and integrate 
over the phase volume (without averaging over the 
discrete variable a [see (2.13)]. As a result we 
arrive at the system 

1 " - T2 A22 I 2T3 A23 2 nuik - ik 1 illk , 

-- £Tiidm Htmnp = (Tft- T}z) ~lhnp AI3 

+ Tiz~thnpA23 + 2Trkn;A"". (3.8) 

*We note that actually the nonsphericity parameter em­
ployed is not,\ [see (2.14)], but at least ,\/5. 

(In the absence of a magnetic field, TO! = xa are 
independent of the discrete variable.) From (3.8) 
we obtain 

1 n [ 10 (A2S)2 ]-1 
X2 = 2 A'" 1 -3 A"•Na , 

(3.11) 

The coefficients X1 and X2 determine the 
thermal-conductivity tensor in the absence of a 
magnetic field [see (3.4 )] : 

(xik)H=o=Xo6ik• Xo=nk(2kTfm)(+Xl++X+ (3.4') 

4. Let now the magnetic field differ from zero. 
Substituting (3.10) into (3.8) we arrive at a system 
of equations for ya: 

0 = Y}kA 11 + YJkB11 + 2 (Y~uk- Yiuk) AI·3 , 

0 = YikA 22 + 2YiukA 23 • (3.12) 

As shown in Appendix A, when A< 1 the nondiag­
onal elements ofthe matrix Aaf3 are small com­
pared with the diagonal elements. From the first 
two equations of (3.12) we can conclude that Yfk 
~ YlzzkA23/A22 and Yfk ~ Y~il013/A11 • We can 
certainly then neglect in (3.12) the first two terms 
on the right side. We obtain thus an equation for 
Ytklm in closed form: 

YJknpA33 + t£Yiktm Hlmnp =- £XsHiknp· (3.13) 

The thermal-conductivity tensor (3.8) includes 
the tensors Ylk and Yik• averaged over the dis­
crete variable. Averaging the first two equations 
in ( 3.12) over a, we obtain 
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(3.14) 

Thus, the thermal conductivity depends only on 
that part of the tensor Yiklm which is even in a. 
Taking this into account, we seek a solution of 
(3.13) by writing for the tensor Y~klm 

Y3 = y+ + y-, (3.15) 

where y+ and y- are respectively even and odd 
in a. 

Starting with (3.15), we shall use the convenient 
symbol L to denote fourth-rank tensors, and the 
product of two tensors LM will again be taken to 
be a tensor of fourth rank with components 

Ltk/m Mtmnp• (3.16) 

Using this notation, we rewrite (3.13) in the form 

A 33 (Y+ + y-) + ~6(Y+ + y-) H =- ~X3H. 

This equation separates into two: 

(3.17) 

(3.18) 

We took account here of the fact that ~ is a linear 
function of the variable a [see (3.9)]. 

Multiplying (3.18) from the right by ~H and 
using (3.17) we obtain an equation for y+ in closed 
form: 

- (A13) 2 Y+ _!_ + ~2Y+H 2 =- ~ ~2X3H 2 • (3.19) 

It can be shown (see Appendix B) that 

H6 = - 4 (5H4 + 16H2). (3.20) 

Using this equation to solve (3.19), we get 

(3.21) 

(3.22) 

(3.23) 

According to (3.14) we must contract y+ about 
the two internal indices. Using the contractions of 
the tensors H2 and It, written out in the Appen­
dix B, we can readily obtain 

(3.24) 

c'=- 3l'J2(3+4l'J2) • l'J2(7+4l12) (325) 
1 (1 + l'J2) (1 + 41']2) ' c2 = (1 + l'J2) (1 + 41']2) • • 

The expression (3.24) is the solution of our 
problem. Indeed, substituting (3. 24) into (3.14) and 
using (3.4), (3. 7), (3.10), and (3.11) we obtain 
directly a general expression for the thermal-con-

ductivity tensor. Separating from this tensor only 
the part dependent on the magnetic field, and taking 
(3.41 ) into account, we get 

(3. 26) 

(3.27) 

The expressions in (3.26), (3.27), and (3.25) de­
scribe the Senftleben effect completely. 

4. DISCUSSION OF RESULTS 

The expressions obtained show that in a para­
magnetic gas in the presence of a magnetic field, 
the coefficient of thermal conductivity becomes 
anisotropic. This causes the thermal conductivity 
to have different values when the magnetic field is 
parallel and perpendicular to the temperature 
gradient. Moreover, when the angle between the 
vectors H and V'T differs from 0 to 90°, a heat­
flow component exists in a direction perpendicular 
to the temperature gradient. 

The character of the dependence of the tensor 
D-Kik on the magnetic field and on the pressure is 
completely determined by (3.25), where the value 
of 1) is [see (3.22) and (3.9)] 

(4.1) 

It follows from (4.1) that at a fixed temperature 
the effect depends only on the ratio H/p, which 
coincides with the main experimental result ob­
tained in[2J. The temperature dependence at fixed 
H/p is determined in (4.1) by the ratio n2JT/A33 • 

It is shown in Appendix A that A33 ,...., Q 11n2 and 
consequently the temperature dependence is es­
sentially connected with the form of the molecule 
scattering cross section. Thus, for the solid­
sphere model n11 ,...., T112 and (4.1) is completely 
independent of T. In the case of Maxwellian mole­
cules ( u,...., r-4 ), n11 is independent of the tem­
perature and 1) ,...., T112• The true character of the 
interaction will lead, as a rule, to an intermediate 
dependence, that is, ,...., Tn, where 0 :s n :s Y2. 

The overwhelming majority of the experiments 
on the determination of the thermal conductivity 
of a pagamagnetic gas were carried out with oxy­
gen. From the temperature dependence of the 
ordinary ( H = 0 ) kinetic coefficients for 0 2 (see, 
for example,CsJ), we can conclude that n11 is in­
dependent of T. Consequently, the character of 
relative variation of D-Kik should depend in pr::rc-
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tice on the combination Hfl/p, as was indeed 
observed experimentally. [2] 

Let us examine the variations of the thermal­
conductivity coefficients in the case when H is 
parallel and perpendicular to V'T. 

From (3.26) we obtain 

~X II 1Jl "' ' , ' 
-- = ~S , 1 L.i (cr-t- Cz). 

Xo - T 
0 

From (3.27) and (3.25) it follows that at all 
values of T'/ 

~Xj_/Xo < 0, 

(4.2) 

(4.3) 

At sufficiently large values saturation sets in, and 
both quantities attain the following absolute max­
ima 

( ~x II ) 2S 
----x.;- co = - 2S + 1 2'\jJ. (4.4) 

Hence 

(4.5) 

which is in splendid agreement with Senftleben's 
experiments. 

From expressions (3.26) and (3.27), and also 
from formulas (A.5) of Appendix A, it can be con­
cluded that the change in the thermal conductivity 
in a magnetic field is completely connected with 
the nonsphericity of the interaction, and that 
.6.Kik,...., A-2• If we use (4.3), we can readily relate 
the parameter with the value (.6.K/K0 )00 which is 
independent of the magnetic field and of the pres­
sure. Comparison with experiments shows that in 
the case of oxygen A. is close to unity. As already 
indicated, the actual expansion parameter is a 
quantity smaller than A./5, and all the assumptions 
made above remain in force. 

Let us examine the region of small values of ry. 
Then 

(4.6) 

In the case of oxygen S = 1 and (4. 6) goes into 

(~Xj_/Xo)H-->0 =- 6'\jJTJt 

(4.6') 

where T'/1 = ( T'/ )o-=1· 
The dependence of (4.6') on the magnetic field 

and on the pressure coincides with the experi-

mentally observed one. Bearing in mind a com­
parison of the absolute values of the calculated 
and measured coefficients, we have increased the 
number of terms in (3.5), taking in (3.3a) the terms 
of higher order in M2 with q = 2 (specifically the 
terms responsible for the effect and connected 
with the magnetic field). The term with t = 1 [see 
(3.3a)] introduces a correction which is still no­
ticeable, whereas inclusion of t = 2 changes the 
results very little. The calculation procedure ob­
viously remains the same, and we shall only give 
the final results. 

Inclusion of the term with t = 1 changes the 
numerical coefficients in (4.4) by a factor %. and 
a multiplier 25/36 appears in the coefficients from 
(4.6). We then have for the ratio (.6.Kl)H-o/~Kl)oo 
a value 

(~x.l)H-->o/(~x_i)oo = 25112/16 = a2 (Hjp) 2 • 

We have calculated a for oxygen, using the well 
known value ti2/2Ik = 2.1° K and determining n11 

from the value of the self-diffusion coefficient. [S] 

If H is in gausses and p in mm Hg, we obtain 
a ~ 2.5. The corresponding experimental value is 
close to 1. 7. If we recognize that the number of 
terms included in (3.3a) is small, and if we bear 
in mind in particular the differential term in (3.2), 
the agreement of the results should be regarded 
as satisfactory. 

APPENDIX A 

Let us determine the coefficients in the right 
half of the system (3.8). We integrate the collision 
integral with one of the functions 1/Jo: (3.6):* 

- ~ dr'ljJ~Jcor(X) =- (1J;~(x; +X~;- X;- Xr;)). (A.1) 

We introduce here the symbol < <I>> for the inte­
gral 

where g is a dimensionless relative velocity. In 
(A.1) we averaged in explicit form over the dis­
crete variable of particle 1. Using the well known 
symmetry properties of the integrand of (A.2) we 
can transform the integral of (A.1) to the form 

2J r~tA~f + 2J ·nmr; (A.3) 
p ,q 

A;:f = + ([('IJ%)'- 'ljJ~ l [('ljJf)'- '!Jh>, 
BZf = + <l('ljJ%f- 'ljJ~ J IN?)~- N~hJ>, (A.4) 

*It must be remembered that the function 1/13 has three in­
dices 



610 Yu. KAGAN and L. MAKSIMOV 

with 

Akf = A~t. akf =a~:. 

The coefficients of (A.4) can be directly cal­
culated for the model of (2.14): 

An=-} n2( ~ Qll_ 5Q12 + Qla + 2Q22), 

au= B11bik• 

an = t n2 ( _ 5: Qll + 5QI2 _ Ql3 + 2Q22) ' 

A}l =a}~= B7l = 0, 

A 2s = ..2_ J.,n2 (.!.. Qll _ Q21) 
25 3 ' 

The numerical coefficients in (A.5) are determined 
in terms of standard integrals of the kinetic theory 
of monatomic gases (see[S]), · 

Q(t,s) = y ~~ ~ e-g'g2s+a (1- cm,l B) dodg. (A.6) 

The tensor .6.iklm has been defined in the text 
[see (3.9)]. The sixth-rank tensor Dhiklmn is 
symmetrical within the index pairs hi, kl, mn, 
and vanishes upon contraction in any of these 
pairs. 

The tensor A33i1i2i3k1k2k3 makes the following 
contribution to (A.3): 

We have neglected in the text terms proportional 
to i\/35 in (A. 7). 

APPENDIX B 

The powers of the tensor H can be readily cal­
culated with the aid of tensors of the form 

a,~= 0, I, 2, (B.1) 

where 

The tensors (B.1) have the symmetry proper­
ties 

The product of two tensors given by (B.1) is 

Fffst Fit~m = 2 [F ms fik; fft f~m) + F ms f~k; fft flm)]. (B.4) 

Using (B.4), we obtain 

H4 = - 4H2 + 24 (f22 - F11), 

H6 =- 4 (5H4 + 16H2). (B.5) 

The thermal-conductivity tensor includes the 
tensors H2 and H4, contracted in the internal 
indices 

(H2)mk = 2 (- 9bik + 7HiHk/H 2 ), 

(H4)mk = 8(33bik-31HiHk/H2 ). (B.6) 

In calculations with more terms than in (3.5), it 
is best to use instead of powers of the tensor H 
the tensors 

which are the eigenfunctions of the operator H2: 

2:.. G1H 2 = - G1, 2:.. G2H2 = - 402. 
4 4 

The tensor H2 is connected with these tensors 
by the relation 
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