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The analytic properties of the imaginary part of the forward amplitude for elastic scattering 
of 1r mesons on nucleons as a function of virtuality (i.e., the square of the four-momentum) 
of the 1r meson are considered in perturbation theory as well as on the basis of the Jost
Lehmann-Dyson spectral representation. In virtue of the optical theorem such an analysis 
yields information on the analytic properties of the total 1rN interaction cross section as a 
function of virtuality. The role of the "anomalous" thresholds is discussed. The possibili
ties for obtaining the total cross section as a multiplicative function of the total energy in 
the center-of-mass system and of the virtuality are discussed. 

l. A number of recent papers have been devoted 
to the investigation of inelastic processes at high 
energies in the pole approximation (see, for ex-
ampleP-7J). The assumptions restricting the pole 
approximation have been enumerated earlier.C4J 
Clearly it is highly desirable to go beyond the lim-
itations of the pole approximation. For this pur
pose it is necessary, in particular, to obtain some 
information on the behavior of the total cross sec-
tion as a function of virtuality.* A first step in 

FIG. 1. Fourth order dia-
gram in perturbation theory. 

momenta are indicated. To keep the considera
tions general, we shall not as yet assume that 
M0 = Mt = M2 = M3 = m and M4 = fJ (m is the nu
cleon mass and JJ is the pion mass). The imagi
nary part of the amplitude for this process is 
written in the form 

this direction is the investigation of the analytic 
properties of the total cross section as a function 
of virtuality for a fixed value of the energy in the 
center-of-mass system. In virtue of the optical 
theorem, which relates the imaginary part of the 
forward scattering amplitude to the total cross 
section, the analytic properties of the total cross 
section are given by the analytic properties of the 
imaginary part of the forward scattering amplitude. 
With this in mind, we now turn to the considera
tion of the analytic properties of the imaginary 

g• 
lmfJ(0°)=- Sn• (1) 

part of the forward amplitude for elastic 1rN scat
tering as a function of the virtuality of the 1r 

meson. 
2. Let us first determine the analytic proper

ties of the imaginary part of the forward elastic 
scattering amplitude in the k2 plane, using fourth 
order perturbation theory. The corresponding 
diagram is shown in Fig. 1. The squares of the 
masses of each of the particles and their four-

*The term "virtuality" is used to describe the square of 
the four-momentum of one of the incoming particles. We re
mark that one is most interested in the behavior of the total 
cross section as a function of virtuality on the real half-axis 
Re k2 > 0 (the metric is chosen such that k 2 = k 2 - k~). [•] 

x\ d•p,b ((p + k- Pt)2 + M~) o (Pi+ M!) 0 (ko :-Po- p,o) 0 (PJO) . 

• [(p -- Pt)2 ·>Mil [(p- Pt)2 -;- M;J 

Evaluating the integral on the right hand side of 
(1) and introducing the notation 

S=-(p+k)2 , T=-k2js, ~7=M7fs, 

we find 

Im oo =-t_ [(1+f3!-f3~)•-4f3!J'I• 
f 4 ( ) 32rrs• f3~ _ f3~ 

1 (a1 + Q'1•) (aa -- Q'1•) x n ,1 ,, , 
(a1 - Q ')(as+ Q ') 

where 

a, = 2 (~~ + ~! - M) - (I + ~g - -.:) ( 1 + ~!- ~;) 

(i= 1, 3), 

Q = [(1 + ~~--.:) 2 - 4~~1 [(1 + ~!-~~)2 - 4~!J. 
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(2) 

(3) 
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The analysis of this expression is considerably 
simplified if we assume that M1 = M3; this as
sumption does not diminish the generality of our 
discussion in an essential manner. Then formula 
(3) takes the form 

Im f (Oo) = _1__ [(1 + f3!- f3;)2- 4f3!J'I• 
4 16ns2 (-r- -r3) (-r- -r4) ' 

"3.4 = [~! + ~i- ~~ + ~~ (~; + ~!) 
- (~i- ~!) (~;- ~!) ± iP'1']/2~!. 

P = ((1 + ~!- ~;) 2 - 4~~) ((~o + ~4) 2 

- ~i) (~i- (~o- ~4)2)· (4) 

It is seen from expression (4) that the imaginary 
part of the forward elastic scattering amplitude 
has two poles in the complex T plane. The posi
tion of these poles in the k2 plane ( s is assumed 
fixed and real) can be easily obtained with the 
help of (2) and (4). 

We see that the poles are situated symmetri
cally with respect to the real k2 axis. At the re
action threshold [i.e., for s = ( M2 + M4 ) 2 ] they 
coalesce into a single point on the real axis, and 
with increasing s they move away from the real 
axis along a hyperbola in the k2 plane with the 
asymptotes 

Im k2 = ± [(Mo + M4)2- Mil'/, [Mi- (Mo- M4)2]'/, 

Mi+M!-M~ 

x [Rek2 + Mi + M;]. 

It is interesting to note that for M{ + Mi - M5 > 0 
(this case corresponds to the so-called "normal" 
thresholds[B]) these poles will always move away 
from the region of interest Re k2 > 0 as the energy 
s increases.[4J On the other hand, if M~ + Mi 
- M5 < 0 (this corresponds to the "anomalous" 
thresholds[8J), the poles will move into the region 
Re k2 > 0 as the energy increases beyond a certain 
value. The distance from these poles to the region 
of interest can be of the same order of magnitude 
as the distance from this region to the point 
k2 =- p2 corresponding to the pole of the propaga
tion function of the 1r meson. 

We shall not discuss this problem in any detail, 
since the presence of poles in the complex k2 

plane in perturbation theory and their role in the 
extra8olation procedure proposed by Chew and 
Low[1 have already been discussed by Ascoli.[9] 

We emphasize only that the above discussion shows 
that these poles correspond to poles of the total 
cross section as a function of the virtuality. For 
an illustration we give the location of the poles of 
the 1rN scattering cross section as a function of 

virtuality in fourth order perturbation theory (i.e., 
for M0 = M1 = M2 = M3 = m, M4 = J.l ). These poles 
are situated at the following points of the k2 plane: 

ki.4 = - + {s + 3m2 - !12 

At the reaction threshold s· = ( m + J.l )2 we have 

ki = k! = -m(2m + 11)~- 112. 

3. Let us now consider the analytic properties 
of the total cross section in the k2 plane on the 
basis of the spectral representation of Jost, 
Lehmann, and Dyson. [ioJ It was shown in the paper 
of Lehmann[to] [formula (23)] that the imaginary 
part of the forward elastic scattering amplitude as a 
function of s and k2 can be written in the form 
[with s <== ( m + J.l )2 in the case of 1rN scattering] 

21t 21't 1 1 

X ~ da ~ dx ~ d(cos!Jll) ~ d(coscp2) 
0 0 -1 -1 

ID (uoi• uJ, x~1 • cos rx. sin q>1 sin q>2 +cos (jl1 cos q>2,s) 
X (5) 

[X1- sin q>1 cos XI [Xz- sin q>2 cos (X- rx.)] ' 

where 

(i = 1' 2), 

K~ = [(s + m2 + k2)2- 4m2s]j4s, 

and the function 4> is arbitrary in the region 

0 .:s;;:; u1 .:s;;:; s'l•j2, - s''•/2 + u1 .:s;;:; Uoi .:s;;:; s'l•j2- u;, 

Xoi ;:>max {0; m1- Y(s'l•j2 + Uoi)2- u7 , 

(6) 

( m1 = 3p and m 2 = m + J.l in the case of 1rN scat
tering); outside this region the function 4> van
ishes. From (5) we can derive the analytic proper
ties with respect to the virtuality k2• Indeed, 
singularities can occur only at points k2 for which 
the denominator in (5) vanishes, since the function 
4> is independent of k2• If the denominator is to 
vanish, at least one of the conditions 

(7) 

must be satisfied. These conditions are identical 
in the sense that they define the same region of 
analyticity in the k2 plane owing to the symmetry 
of the conditions (6) with respect to the index i. 
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We shall therefore leave out this index in the fol
lowing. 

Using formula (6), we can express the virtuality 
k2 as a function of X, u, u0, K0, and s. In addition 
to the variables (2) it is convenient to introduce 
also the variables 

X = [ (..!._ + ~) 2 - ::::_]'/, 
2 5'/, s ' 

x2 = x~ls, 

Then 

't = 1 2 _ 2 (y2 + (32 _ x2) (1- x2 + y2) 
+ ~ 4y2 + (1- (x + y) 2) (1- (x- y)2) z 

2 vr=z [(1- (x + y)2 ) (1- (x- y)•)]'/, 
± 4y2 + [1- (x + y) 2 ] [1- (x- y)2] z 

x {(y2 + ~2 _ x2)2 _ 4~2Y2 

- [1- (x + y) 2 ] [ 1- (x- y) 2 ] ~2z}'i •• 

(8) 

(9) 

As we have shown above [formulas (6) and (7)], the 
imaginary part of the forward scattering amplitude 
can have singularities only in the following region 
of the variables: 

x:;?O, y:;?O, 

x >max {0, ~1 - x; ~2 - y}, 0 <: z <: 1. (10) 

The expression under the root sign in (9) can 
be positive or negative. If it is negative, the sin
gularities will appear in the complex k2 plane. 
Then 

where 

' " 2 (y2 + f3•- x2) (1- x• + y•) 
T1 = l--;-~--4y'+[1-(x-t-y)2][1-(x-y)"]z 

,o= I + [F - 2b, 

T~ ~c 4 (I -- z) [ 1 - (x-+- y)2 ] [ 1 - (x- y)2 ] 

X W2 ( 4y2 - - [ 1 - (X + y)2] 

X [I - (x- y)2] z)- (yz + W- x2)2} 

X { 4y2 + [I - (x -;- y)2] [I - (x - y)2] z} - 2. 

It is seen from (11) that the singularities are 
situated symmetrically with respect to the real 
T axis. 

(11) 

In order to determine the boundaries of the 
region of analyticity, we require first of all the 
minimal value of r1 for which the variables x, y, 
K, and z are in the region (10). An elementary 

calculation yields 

T1min = 1 - V3 ~2 I Yo 

where 
:rt + (jl :3 "V3 ,3; - 13 2 

Yo= cos-3-, cos<:p=-2~. 

(12) 

Hence the imaginary part of the forward elastic 
scattering amplitude cannot have singularities for 
T1 < Ttmin if T~ > 0. 

Expression (12) is simplified considerably in 
the case of 1rN scattering with s ::::: ( m + fJ ) 2• 

Noting that in this case ( (3 ~ - (3 2 )/ (3 2 « 1, we ob
tain 

From this we find 

(Re k2)max 

= s (2m2 - mD I 2 (m~- m2 ) -}(3m2 - m~). (14) 

i.e., asymptotically (for s- oo ) the boundary of 
the region of analyticity in the k2 plane moves 
toward the region of positive values of Re k2, the 
shift being proportional to s. 

Let us now determine the maximal and minimal 
values of T ~ for a given fixed r 1. We notice, first 
of all, that 

T~ = 4 (b- r) (~2 I r- b), 

r=(y2+~2-x2)1(J-x2+y2). (15) 

Thus, for a given r 1 (i.e., for a given b), T~ is a 
function of the single variable r. The signs of b 
and r are identical and are determined by the 
sign of the expression y 2 + (3 2 - K2• 

It is seen from (15) that it is sufficient for find
ing the maximal value of T ~ for given b to deter
mine the minimal value of r for the same b 
[taking account of the restrictions on the region of 
the variables (10)] and substitute it in (15). In this 
way we obtain for b::::: 0 

rimax -+- (1 + 132 - Ttl" - L 
(f _ q2)2 I (f + q2)2 - q2 ' 

(16) 

where q = ( (3~ - (3 2 )/2(32• For 1rN scattering and 
s ::::: ( m + fJ )2, we have q « 1, and (16) takes the 
form 

(17) 

Thus, for Ttmin ~ Tt ~ 1 + (3 2, singular points 
can only be found inside the ellipse described by 
Eq. (16). 

To find the minimal value of T~ for given r 1, 

we must determine the maximal value of r for 
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given b. The resulting expressions are very 
complicated and are, therefore, given in the Ap
pendix. Here we quote only the expression for the 
minimal value of d as a function of T1, with 

Equation (19) defines the boundary of the region of 
analyticity closest to the real axis. It is easily 
seen from (17) and (19) that the boundaries of the 
region of analyticity in the k 2 plane move 
asymptotically (for s-- oo) away from the real 
axis, the shift being proportional to s. 

The shape of the region of analyticity in the k2 

plane for 1rN scattering at the reaction threshold 
[ s = ( m + f.l )2] is shown in Fig. 2 [condition (18) is 
not satisfied here, and we must therefore use the 
formulas given in the Appendix]. It is interesting 
to note that at the reaction threshold the cross 
section has singularities on the real axis close to 
the pole of the 1r meson propagation function at 
k2 = f.l 2. Indeed, the closest singularity (point A in 
Figs. 2 and 3) for s = ( m + {.l) 2 is situated at the 
point k2 = -3f.J, 2 (2m +f.l)/(2m- f.l). 

FIG. 2. Region of analyticity of the total "N interaction 
cross section in the k2 plane with s = (m + 11l (not shaded). 
The scale of the imaginary axis is chosen ten times smaller 
than that of the real axis. 

The directions in which the boundaries of the 
region of analyticity and the point A move as s is 
increased are indicated in Fig. 2 by arrows. Fig
ure 3 shows in a larger scale the shape of the 
boundary of the region of analyticity near the point 
k2 = - {.l 2 for s = ( m + f.l )2• For all s satisfying 
condition (18) [for 1rN scattering this means 
s :=::: ( m + 3f.l )2] the shape of the boundary near the 
point k2 =- {.l 2 changes (see Fig. 4), while the 
other boundaries keep their previous shape, as 
shown in Fig. 2. The boundary point Re k2 

= -( 3f.l )2 is not shifted any more as the energy 
changes. The other boundary points move along 
the directions indicated by the arrows as the 
energy s is increased. As already noted, this 
shift is asymptotically proportional to s. 

Tt min ::s Tt ::s .Bi and the following restrictions on s: 

s > (m 2 - m1) 2 , s > (m + m1) 2 • (18) 

In this case we have 

FIG. 3. Shape of the bound
aries of the region of analyticity 
near the point k2 = - p.' for 
s = (m + p.)2 • 

(19) 

4. From the results obtained above we can 
draw a number of conclusions. First of all, we 
note the following circumstance. We found in 
fourth order perturbation theory that the singular
ities of the 1rN interaction cross section as func
tions of the virtuality k2 can occur only in the re
gion Re k2 < 0 and are considerably farther re
moved from the region of interest Re k2 > 0 (see 
the footnote above) than the pole at k2 = -f.J,2• The 
spectral representation then indicates the possi
bility that singularities may also appear in the re
gion Re k2 > 0 of the complex k 2 plane; near the 
reaction threshold these singularities may be sit
uated at a distance from the region of interest 
which is comparable with the distance from the 
pole of the 1r meson propagation function to that 
region. 

The occurrence of these singularities may have 
a great effect on the possibility of carrying out the 
extrapolation procedure proposed by Chew and 
Low[4J not only in the "anomalous" cases but also 
in the case of an inelastic NN interaction with 
formation of a single 1r meson. Since, however, 

FIG. 4. Shape of the bound
aries of the region of analyticity 
near the point k2 = - p.2 for 
s > (m ,+ 3p.)2 • 
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the singularities in the complex plane move away 
from the real axis as s is increased, it appears 
to be probable that their effect will become 
smaller as the energy increases. 

Furthermore, it follows immediately from the 
analytic properties of the total cross section as a 
function of the virtuality, as obtained above, that 
the total cross section cannot be a multiplicative 
function of s and k2 for arbitrary values of these 
variables. Indeed, if the function a ( s, k 2 ) were 
multiplicative, a ( s, k2 ) = f1 ( s) f2 ( k2 ), this would 
imply that the position of the poles in the k2 plane 
is independent of the value of s. We have shown 
above that this is not the case either in perturba
tion theory or on the basis of the spectral repre
sentation. 

However, sometimes one is interested in a 
multiplicative total cross section on the real k2 

axis for 0 < k2 ~ f.l 2 (this problem has been dis
cussed earlier[5J). The requirement that the total 
cross section be multiplicative on a small segment 
of the real axis and at the same time have the 
analytic properties obtained above imposes cer
tain restrictions on the form of the total cross 
section as a function of s and k 2• This problem 
will be investigated separately. 

Ascoli[tt] has recently obtained the analytic 
properties of the amplitude for processes with an 
arbitrary number of outgoing lines with respect to 
two transferred momenta. If, in particular, we 
consider such amplitudes in the one-meson ap
proximation, we expect that the region of their 
analyticity with respect to one of the transferred 
momenta, the other one remaining fixed, is at 
most as large as the region of analyticity of the 
cross section as a function of the virtuality (the 
virtuality of the 7T meson coincides here with the 
transferred momentum ). The region of analyticity 
that we have obtained is considerably larger than 
the region of analyticity in the work of As coli, [11] 

since we are interested only in the one-meson 
term in the processes considered by Ascoli. 

In conclusion I take this opportunity to thank 
D. S. Chernavskii for his steadfast interest in this 
work and for a discussion of the results. 

APPENDIX 

We give here the formulas for the minimal 
value of T ~ for given T1• 

1) For b <:: b0 = [ 1 + ( /32 - Pd2J [ P~+ P2 - 2P~d 
X 4 -1(13-Pt) -2: 

-r2. =4 [b-R0 ] --b · [ [32 J 
2mtn Ro ' 

R - 2[32(Yl-q) 
o- 1+ 2 ' 

- P 2 I 2 3 1'/, :rc + '~' Y1- ;r-;r p- , cos-3-, 
yl 

l2p"- 9p + 27q I 
cos <p = 2 I p2 - 3 !';, 

2b 
P= ~+q. (A.1) 

2) Forb ::s b0: 

T~min = 4 [b- R1J [~2 / R1- b]; 

R 1 = 2~2 (y2- q) I [ 1 - (~2 - ~1)2 + 2 (~2- ~1) Y2l, 

Y2 = + {~2 [ 1 - (~2 - ~1)2 ] - (~2 - ~1) (~~ - ~2) 

+([~2 (1~ (~2- ~1)2)+:(~2- ~1) (~~- ~2)]2- 4b (~~- ~2) 

(A.2) 

If conditions (18) are satisfied, (A.1) and (A.2) go 
over into formula (19). 
3) If s does not satisfy condition (18), the coord
inate of the point A (see Fig. 2) is determined by 
the expression 

2 .,;-
kA = - [s r s- (m2 + m1) s. 

- (m2- 2m1m2) liS+ m2 (m2- mt)l 

X (Jfs + m2- m1)-1 . (A.3) 

Formula (A.3) agrees with formula (4.5) of the 
paper of Todorov,[i2] in which the boundaries of 
the region of analyticity on the real k2 axis were 
determined. 
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