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The alpha decay theory previously developed for nonspherical nuclei is used to determine a 
new shape parameter, the amplitude of the zero-point vibration of the quadrupole deforma
tion. It is shown that different experiments actually measure different deformation values. 
In particular, the difference between the quadrupole deformation determined from alpha de
cay and the equilibrium quadrupole deformation can be expressed in terms of the mean 
square fluctuation of the ground state deformation of the nucleus. This mean square fluctua
tion is determined from the experimental data for 21 even-even nuclei. It is shown that the 
amplitude of zero-point quadrupole deformation vibrations has a sharp maximum at the 
boundary between spherical and nonspherical nuclei. 

MEASUREMENTS of various physical nuclear see that Xz (B) = ef3 Fz ( {3), where Fz ( {3) is a 
properties that depend on the quadrupole deforma- slowly varying function (in the region of deforma
tion a 2 are frequently dealt with at present. There tion values of interest it is sufficient to retain the 
are zero-point vibrations of this deformation in first few terms in the asymptotic expansion of Fz 
the ground state of the internal nuclear motion. In in inverse powers of B). 
fact, according to quantum mechanics [1] the de- Thus, the dependence of the probability ampli-
formation distribution function has the form tude on the deformation is essentially determined 

f (cx2) ,~ ( 2:n:X2)-'/, exp { _ x2l2x2}, (1) by the factor exp ( ba2 ), where b = {3/ a 2 is given 
by Eq. (2.23) ofC2J. We transform the integrand so 

Where X = 0!2 - CY2 With CY2 the equilibrium defor
mation. There is therefore a question as to which 
values of the quadrupole deformation are involved 
in the results of such measurements. 

In many experiments (Coulomb excitation, life
times of excited states, etc.) the measured quan
tity is the internal quadrupole moment of the non
spherical nucleus 

as to reveal the position of its maximum: 

l(J_' f (cx2 ) = exp {- b9 I 2 + bcx~(J_>} (2rr.0i)-';, exp {- x! I 2XZ}; 
(3) 
(4) 

We see that the exponential dependence of the 
alpha decay probability amplitude on the deforma
tion shifts the maximum of the integrand to the 

(2) point a 2 = a~a). Consequently, it is not the equili
brium deformation a 2 that enters everywhere in 
the formulas of the theoi) of alpha decay,C2J but 
another deformation a~a defined by Eq. (4). 

Multiplying by (1) and integrating over a 2 gives 
again Eq. (2) but with a 2 replaced by a 2• Thus, it 
is the equilibrium deformation a2 that is involved 
in the measurements of the electric quadrupole 
moment of a nonspherical nucleus. 

The situation is different in the theory of alpha 
decay.[2J According to Eq. (2.18) of[2J, the proba
bility amplitude for emission of an alpha particle 
with angular momentum l depends on the quad
rupole deformation of the daughter nucleus through 
a factor Xz ( (3 ). The true probability amplitude is 
proportional to the integral 

~Xi(~) f (cx2) dcx2. 

With the aid of Eq. (2.23) of[2J, it is not difficult to 

Since the lifetimes of the rotational 2 + states 
in many heavy even-even nuclei have been meas
ured by Bell et al, [3] it is possible to use Eq. (4) 
to compute the corresponding zero-point vibration 
amplitudes (~ )112• The results are listed in the 
table. The deformation a~a) was determined from 
the alpha decay fine structure and Eq. (2. 22) [2], by 
the procedure described in [4]. The values of Oi2 

are taken from [3]. The first lines of the table 
show nuclei near the boundary between the regions 
of spherical and nonspherical nuclei. The nucleus 
Ra222 is apparently of an intermediate type, and 
the theory of nonspherical nuclei is not fully ap-
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Ra•zz 0.18 0.12 0,07 0.6 
Ra••• 0,24 0,11 0,10 0.9 
Ra226 0,22 0.12 0.08 0.7 
Ra••• 0.21 0,13 0.08 0,6 
Th226 o:23 0.14 0,08 0.6 
Th•zs 0.21 0.14 0.07 0,5 
Th•so 0.19 0.15 0.06 0,4 
Th•s• 0.19 0.15 0.05 0,3 

X 
X 

X X 
X X X X X X 

X 
X 

X 

J.0~20 --'--
2JO 21•0 :?50 .4 

plicable to it.* As is evident from the last column 
of the table, the quantum fluctuations of the quad
rupole deformation are quite significant near the 
boundary of the region of stability of nonspherical 
shape. 

An independent estimate of the zero-point vibra
tion amplitude can be obtained from the probabili
ties Wa for formation of alpha particles within a 
nucleus. These probabilities are determined from 
the observed half-lives.C4•5J It is easy to see that 
the effect of the zero-point deformation vibrations 
is to renormalize these internal formation proba
bilities. Integrating both sides of Eq. (3) over 01. 2 

and squaring, we obtain 

Wa = wa exp (- b2X'2), {x2f1· = b-l)n'/, (wa I Wo;), (5) 

where wa is the true internal formation probabil
ity and wa is the experimentally observed renor
malized internal formation probability, which is 
determined from the experimental data by the 
procedure described in references 4 and 5. The 
values of wa for twenty even-even nuclei are 
plotted against mass number in the figure. The 
general trend of the internal formation probabili
ties reflects some increase of the renormalization 
logarithm In <walwa) with decreasing mean 
square quadrupole deformation fluctuation. Un
fortunately, the internal formation probability 
fluctuates from nucleus to nucleus, so that we had 
to average In w 01. over several nuclei in order to 
use Eq. (5). In order to estimate the zero-point 
vibration amplitude (x2 )112 we averaged In wa 
over the five nuclei Ra224 •226 •228 and Th226 •228 (for 

*In this connection, see below, and also the seventh foot
note od•J. 

Thzs• 0,17 0.15 0.04 I 0.3 
uzso 0.15 0,15 -o -o 
u•s• 0.22 ll. t6 0.07 0.4 
u•3• 0.20 0.16 0.06 0.4 
u•s6 0.17 0.17 -o -0 
uzss 0.16 0.17 -o -o 
Pu23s 0.19 0.17 0.04 0.2 
Pu240 0.17 0,17 -o -o .. 

the reason mentioned above, the extreme left 
point of the figure, corresponding to Ra222 , was 
omitted from consideration) and, assuming that 
there is no renormalization in the other fourteen, 
we obtained a corresponding average of In wa. 
Substitution in Eq. (5) gave ( x2 )1/ 2 = 0. 05. The 
fact that this estimate is somewhat lower than the 
values in the table is probably due to the neglect 
of the zero-point vibrations in the region A > 228. 

In conclusion, we note that the zero-point de
formation vibration amplitude also rises sharply 
if the nonspherical shape stability boundary is ap
proached from the region of spherical nuclei. This 
is easily seen from the experimental data on elec
tric quadrupole 2+- o+ transition probabilities 
for isotopes of radon [3] and polonium. [6] The 
quadrupole vibrations of spherical nuclei are 
fivefold degenerate. [6] If, of the five degrees of 
freedom, we consider just the one corresponding 
to the oscillation which does not destroy the axial 
symmetry of the nuclear shape with respect to 
some direction in space, then the amplitude of the 
zero-point vibrations of the corresponding defor
mation is determined from the relation 

(6) 

where w is the probability per unit time for emis
sion of the nuclear gamma from the 2+ first ex
cited~ate, tiw is the energy of the gamma, and 
x2 = 01.~ is the mean square quadrupole deforma
tion fluctuation in the ground state of the nucleus 
and is actually the measured quantgy in this case. 

The mean square fluctuations ( 01.~ )112 calculated 
with an assumed value Ro = 1.2A1/J Fermi units, 
are: 

Nucleus 

( 2)'/ •. 
C(2 • 

Pozlz Po2tc 

0.015 0.021 

Em2Is 

>0.025 0.035 O.o:lfJ 

It is evident that large quantum fluctuations of 
the quadrupole deformation are a characteristic 
feature of the nuclear "phase transition" corre
sponding to a change in the symmetry of the 
equilibrium shape. 
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