
SOVIET PHYSICS JETP VOLUME 14, NUMBER 3 MARCH, 1962 

MINIMUM NUMBER OF PARTIAL WAVES IN REACTIONS IN WHICH THERE ARE SEVERAL 

PARTICLES IN THE FINAL STATE 

HSIEN TING-CH'ANG and CH'EN TS'UNG-MO 

Joint Institute for Nuclear Research 

Submitted to JETP editor March 4, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 784-789 (September, 1961) 

A universal inequality is derived for the minimum number of partial waves involved in a 
reaction in which more than two particles occur in the final state. 

1. lNTRODUCTION 

THE minimum number Lmin of partial waves 
occurring in collisions of particles at high energies 
has been determined by several authors. Rarita 
and Schwed[!] have shown how to calculate Lmin 
for elastic scattering, given a knowledge of the 
total cross section of the interaction. Recently 
Grishin and Ogievetskii [ 2] have derived an in­
equality which is very effective in the determination 
of the minimum number of partial waves in two­
particle reactions, if one knows the total elastic 
cross section and the differential cross section 
for certain angles. 

As is well known, most high-energy collision 
processes are multiple processes in which more 
than two particles appear in the final state. The 
question arises as to how to determine the mini­
mum number of partial waves in such collisions. 
A knowledge of Lmin is important for the proc­
essing of experimental results, since Lmin is 
connected with the minimum interaction radius. 

In the present paper the inequality obtained by 
Grishin and Ogievetskii for two-particle reactions 
is extended to the case of reactions in which more 
than two particles appear in the final state. It in­
volves the angular distribution of one of the parti­
cles in the final state, the total cross section for 
the given channel, and Lmin· In Sec. 2 we discuss 
in detail the choice of the independent variables 
for the description of the final states of a three­
particle system. In Sec. 3 the inequality is ob­
tained for the case of particles without spin 
( 0 + 0-0 + 0 + 0). In Sec. 4 it is shown that the 
inequality obtained in Sec. 3 can be carried over 
without change to the cases 

o + 1/2 -o + O+ 1/2. 1/2 + 1/2--+ o + 1/2 + 1/2• 

1/ 2 + 1/ 2 --+0+0+0, 0+0-+0+ 1/2+ 1/2· 

In Sec. 5 the inequality for the case of three par-

ticles in the final state is extended to the case in 
which there are n particles in the final state; in 
Sec. 6 applications of this inequality are dis­
cussed. 

2. KINEMATICS OF THE THREE-PARTICLE 
SYSTEM 

To describe the states of a three-particle sys­
tem we shall introduce three other vectors instead 
of the momentum vectors p1, p2, p3 of the particles. 
As the first we take the momentum of the center of 
mass, P = p1 + p2 + p3; in the center-of-mass 
system of the three particles (which we shall 
hereafter call simply the 3c system), P = 0. As 
the second we choose P3c (I P3c I, D3c), the mo­
mentum in the 3c system of that one of the three 
particles which can be identified experimentally 
(for example, the recoil nucleon, or K meson, or 
hyperon). In the system in which the other two 
particles, taken as a whole, are at rest (we shall 
call it the 2c system), these two particles move in 
opposite directions, so that as the third vector we 
can take the direction D2e of the relative mo­
mentum of the two particles in the 2c system and 
the energy rol 2c of these particles in the 2c system. 

This choice of the independent variables has a 
number of advantages. First, as is shown in the 
Appendix, the integration over the phase space 
can be separated into two parts: 

~~~ d~1:~~.i: 6 (p1 + P2 +Pa-P;) 6 (E1 + £2 + Ea- Ei) (1) 

= ~ dsm~cG (rol~c, rol~c) ~~ dQ2c dQ3c· 

Here gr. ac is the total energy of the three particles 
in the 3c system, and Pi and Ei are the momentum 
and energy in the initial state. The function 
G ( rol ~c• rol ~c) does not depend on the angles, and 
the limits of the integrations over dD2c and dDac 
do not depend on each other. Thus the integrations 
over the angles and the energies are separated. 
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Second, startint from the work of Chou Kuang­
chao and Shirokov, 3] one can show that the total 
angular momentum of the three particles can be 
obtained in the usual way by compounding l2e, the 
relative angular momentum of the two particles in 
the 2c system, and l 3c, the angular momentum of 
the identified particle relative to the two other 
particles in the 3c system. 

3. INTERACTIONS OF THE TYPE 
0+0-0+0+0 

Let us first consider the simplest case, in 
which all of the particles are spinless 
( 0 + 0 - 0 + 0 + 0). Let us choose the variables 
as indicated in Section 2; then the general form of 
the amplitude for the process is 

p = """ R l2c• lacy* (Q ·) C lzc• P.2c; lac• 1'- acy (Q ) L.J L L, M l L, M 12ci'-2c 2C 

(2) 

Here the summation is taken over all quantum 
numbers. The function R~c, lac depends on the 
total angular momentum L of the three-particle 
system, and on l2e and lac• the angular momenta 
mentioned at the end of the preceding section. 
The other arguments of the function R~c. l3c 
are invariant under Lorentz transformations. 
Yl,m are spherical harmonics; Oi is the unit 
vector in the direction of the momentum of the 
incident particle in the 3c system; c::· are 
Clebsch-Gordon coefficients. 

If we choose the z axis in the direction U3c, 
Eq. (2) can be written in the form 

F = """R lzclac (21ac + 1 )''• C lzc• M; lsc• oy (Q ) y• (Q·) L.J L 4It L, M l2c• M Zc L, M t • 

(3) 

The angular distribution of the identified parti­
cle is of the form 

a (0) = ~ G (~:c, ~~c) d~:c ~I F 12 dQzc 

= ~ \ I ~ R lzc lac ( 2lac + 1 )''• C lzc· M; lac• oy~. M (0) 12 
Mlzc ~ I Llac L , 4n L, M 

and the cross section for the process is given by 
the formula 

~ """ \ 2 2 I""" (21ac + 1 )''• a3 = a (0) dQ = L.J ~ G (~~c. ~ac) d~zc L.J ~ 
LMlzc lac 

(4) 

X R lzc lace lzc· M; lac· o j2 . 
L L, M 

(5) 

Let us assume that in the expressions (4) and 
(5) we can confine ourselves to a finite number 
Lmin of partial waves. Then by using the Cauchy 
inequality 

we get 

""" , """ I ~, ( 21 + 1 ) 'I. . 
1
2 a (0) < L.J ~ L.J L.J R 12c lac _ac__ C 12c· M, lac• o 

Mlzc L lac L 4n L, M 

or 

,, 2 2 2 
X L.J I Y L, M {0) 12 G (~zc, ~ac) d~2c 

L 

(7) 

It must be noted that after the summation over M 
the right member of Eq. (6) already does not 
depend on (}; this is unlike the case of the other 
two particles, for which there is no such summa­
tion over M and the right side of the inequality 
depends on (} .[2 J 

4. INTERACTIONS OF THE TYPE 
o+%-o+o+% 

Let us consider the case 0 + V2 - 0 + 0 + %. 
The amplitude for this process is given by the 
expression 

p _ """R t2ct3ccL'· M-{3; ''•· f3C lac· o; t2c, M-f3cL· M-a; '/2, a. 
- L.J JLL' J,M L',M-{3 J, M (8) 

( 213c + 1 )''• • X --7m- y t2c. M-{3 (Qzc) y L, M (Q;); 

here the summation is over J, L, L', M, l2e, and 
lac• where J is the total angular momentum of the 
three-particle system in the 3c system, L and L' 
are the total orbital angular momenta, and a and 
{3 are the spin projections of the particles in the 
initial and final states in the 3c system. The other 
symbols are the same as in the preceding section. 

The angular distribution of the identified par­
ticle takes the form 

a {0) = ~ ~ G (~~c, ~~c) d~~c ~IF 12 dQ2c 
a.{3 

= """ \ / """ R 1zc• 1acci,.', M-Il; 'f,, llctac· o; lzc• M-13 
L.J ~ L.J J,L, L' J, M L', M-{3 

a, {3 L,L',J 
(9) 

l2c• M !ac 

L M-a· 'I a (21ac + 1 ) '!, * 12 2 2 2 
X C/ M ' '' ~ Y L, M (0) G (~zc, ~ac) d~2c· 

Using the Cauchy inequality and making calcu­
lations like those given in Sec. 3, we get the 
inequality 

4na (0) /a a< (Lmtn + 1 )2, (10) 

where 

a3 = ~a (0) dQ. (11) 
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The inequality (10) is of the same form as for 
the spinless case. It is easy to show that this same 
result can also be obtained for the cases 

1 /z -l_ 1/2---+ 0 + 1/2 + 1/2, 1/2 + 1/2---+ 0 + 0 + 0, 

,0+0---+0+ 1h+ 1/2 
5. INTERACTIONS IN WHICH THERE ARE n 

PARTICLES IN THE FINAL STATE 
Let us first consider the case 0 + 0 

n 

- ~. In choosing the variables for this 
case we can take first the momentum P of the 
center of mass of the n particles. In the center­
of-mass system of these n particles ( the nc 
system), P = 0. Next, Pnc< IPnc I, ~nc) is the 
momentum of the identified particle in the nc 
system. In the system in which the n -1 particles 
are at rest taken as a whole [the ( n- 1) c 
system], it is convenient to take as the variables 
ro? (n-1)c. the total energy of the n -1 particles 
in the ( n -1 )c system, and ~ (n-1) C• the unit 
vector in the direction of the relative momentum 
P(n-1)c of one of these n-1 particles and the 
other n-2 particles, taken as a whole, in the 
( n -1 )c system. The remaining variables are 
chosen analogously, and are written ro? (n-2)c' 
~ (n-2)c• ... , ID? ~c. ~2C· The advantages of this 
choice of the independent variables have been in­
dicated in Section 2. 

The integration over the phase space is of the 
form 

\' dp1 dpz ... dp n " 
\ ---=--------'-' 0 (PI+ Pz + · · · + Pn- Pi) u (£1 + · · · 
• 2"EtEz . .. E, 

+En- Et) = ~ G (ID?~c. ffi?~c. · · · , ffi?~c) dro?~c ..• dro?rn-I)c 

X ~ dQ2c. •. dQnc, (12) 

where G is a function which depends only on the 
energies and not on the angles. 

By means of the set of independent variables 
that has been indicated one can reduce the ampli­
tude for the process to the form 

X CL(n-1) c• M(n-1) c; Inc• l"nc y* (Q ·) y (Q ) 
L, M L, M " 1 12c• l"2c 2C ' ' • 

(13) 

where L and M are the total angular momentum 
of all n particles in the nc system and the z 
component of this angular momentum; lie and IJ.ic 
are the relative angular momentum and z compo­
nent of angular momentum that correspond to the 
momentum Pic in the ic system; Lie and Mic 

are the total angular momentum and its z compo­
nent in the ic system; the summation is taken over 
all the angular momenta and z components. 

Let us take the z axis along ~nc: then the 
angular distribution of the identified particle and 
the total cross section can be written in the forms 

Cn (8) = ~I Fn 12 G (ro?~c, ... , ffi?~c) dro?L • • • dro?~n-1)c dQzc• .. 

(14) 

c, = ~ c, (8) dQ. (15) 

Using the Cauchy inequality, we get from Eqs. (14) 
and (15) 

(16) 

This inequality is analogous to the one obtained in 
the case of three particles without spin. For the 
general cases in which several particles have 
spins different from zero it can be shown in just 
the same way that the result is the same as in the 
case of spinless particles. 

6. DISCUSSION 

The inequality (16) is useful for the determina­
tion of Lmin· It enables us to calculate Lmin if 
we know the total cross section for a process in 
which a definite number of particles emerge in the 
final state and the angular distribution of one iden­
tified particle ( K meson, hyperon, recoil nucleon, 
or antibaryon) in the c.m.s. 

In view of the fact that the right member of 
Eq. (16) does not depend on 8, the inequality is to 
be written in the form 

(1 7) 

It must be noted that if we take the z axis in 
the direction ~i• then between the angular distri­
bution of one identified particle out of the j parti­
cles in the jc system 

c, (8;) =~IF, 12 G (ro?;c, .. · , ID?~c) dro?;c .. . dro?rn-l)c 

X dQzc . . · dQ(j-1)c dQU+1)c-- · · dQnc 
(18) 

and the cross section for the process we have the 
relation 

(19) 

The inequality (19) makes it possible to determine 
the minimum number of partial waves essential 
for the description of the subsystem jc. 

The writers thank Chou Kuang-chao and V.I. 
Ogievetskii for helpful discussions. 



MINIMUM NUMBER OF PARTIAL WAVES IN REACTIONS 567 

APPENDIX* 

For the case of an n -particle process the inte­
gral over phase space is of the form 

(' dp1 ... dpn . 
I= JZn£1 £ 2 .•• En b(Pt -t- P2 -t- · · · -t- Pn-PI)b(£1 -t- ... 

It can be written in the explicitly invariant 
form 

(A.1) 

I = ~ d4Pt ... d4pnb (Pi + mi) ... b (pi + m~) 64 (Pt + P2 + ... 

+ Pn-Pi)· (A.2) 

After the transformation 

Pt + P2 = kz, Pt- P2 = 2q2 

we get 

I=~ d4k2 dlq2 d4p3 .•• d4pn6 (( ~~ + qzf 

+ mi) 6 ( ( ~~ - q2 Y + m~)6 (p~ + m~) ... 6 (p~ + m~) 

X b4 (k2 + P3 -!-- · · · + Pn -pi)· 

Noting that 

d4q2 = + Y q~ + q;~ dqzo dq~ dQ2, 

(A.3) 

we can perform the integration over d4q2 in the 
2c system, in which 

and Eq. (A.3) then takes the form 

X 64 (kzc + P3-!-- · · • + Pn- p,), 

*An analogous method of integration over phase space 
has been proposed earlier by Kopylov[4] for the calculation of 
statistical weights and distributions in theories of multiple 
production. 

where 

Nl;c/ 4 = q~c + (mi + m~) j 2. 

It is easy to see that 9"Jl 2 c is the total energy of 
the two particles in the 2c system. 

Continuing the indicated procedure, i.e., 
setting 

k, + Pl+t = k,+t• k,- Pi+t = 2q,+l! i = 3, 4, ... , n- I 

and integrating over d4qi+i in the ( i + 1 )c system, 
we finally obtain the integral over phase space in 
the form 

I = ~ G (Nl;c, · • • , Nl~c) dQ2C. · . dQnc d>JJl;c · • · d>JJl~n-1) c 

(A.4) 
( Nl ic is the total energy of particle i in the ic 
system), where 

1 ""2 2 1 (""2 2) 4 ""'" = q;c + 2 ""'(i-1) c + m, , 
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