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Spin-lattice relaxation of hydrated metal ions in aqueous solutions due to the interaction 
between the ion spin and the internal vibrations of the complex ion is investigated by the 
method of the theory of random processes. 

1. INTRODUCTION 

~IS paper is devoted to the calculation of the 
lifetime of the spin of a paramagnetic ion in a 
liquid solution in a given energy level. We base 
our discussion on the generally accepted notion 
that in solution a paramagnetic ion M forms to
gether with the nearest diamagnetic particles Xi 
a stable paramagnetic complex ion whose vibrations 
can be characterized by a set of normal coordi
nates Qj. The oscillations of Qj produce varia
tions of the electric field due to the particles xi 
at the position of the paramagnetic ion at the cen
ter of the complex ion and interact via the spin
orbit coupling of the ion ( JCso = t..L · S) with the 
spin S of particle M. On the other hand, the os
cillations of Qj interact with the Brownian motion 
of the particles of the liquid surrounding the com
plex ion, giving rise to a set Qj (t ) of independent 
narrow-band random Gaussian processes; the 
properties of the latter have been studied in de
tail.[t-3] Although the energy tiwMM' released in 
the reorientation of the spin is small compared to 
the energy intervals tiwj between the sublevels of 
the oscillators Qj, the random nature of the vari
ation of the coordinates Qj determines the possi
bility of the transfer of the spin energy of the ion 
M to the oscillations of Qj describing the com
plex ion. We shall treat the coordinates Qj semi
classically; a quantum mechanical treatment of 
the interaction of the oscillators Qj with the 
medium yields results which are basicalg in 
agreement with the classical discussion. a] 

The energy of interaction of the spin S of the 
central ion of the complex with the oscillations of 
Qj can be represented in the general case in the 
form of the series 

3t = ;;eu> + ;;e<2l + ... =~PI (S) Ql + ~ P;i(S) Q;Qi + ... ' 
I ij (1) 

where Pj (S ), Pij (S) are quadratic functions in 
the components of the vector S (Sx, Sy. Sz ). If 
x, y, z, define the laboratory system of coordi
nates, then the coefficients Pij (Sx, Sy. Sz) will, 
under rotation of the complex ion, turn out to be 
functions of randomly varying angles specifying 
the orientation of the complex ion with respect to 
the x, y, z system. 

In the paper by one of the authors together with 
Al'tshuler [4] a calculation was given of the rate of 
relaxation of the spin S due to the terms linear in 
Qj in the expansion of the spin energy. Analysis 
shows, however, that a more effective relaxation 
is induced by the terms in the expansion of x(2) 

which are quadratic in the Qj. * The same conclu
sion was obtained indesendently of us by Aleksan
drov and Zhidomirov [5 who considered the re
laxation of the spin of a free radical due to its in
teraction with intramolecular oscillations. There
fore, for the analysis of this problem we refer the 
reader to the faper by Aleksandrov and 
Zhidomirov. [5 

We shall evaluate the probability of relaxation 
transitions between the spin energy sublevels by 
means of the perturbation theory formula 

WM,M' = n,-2 ~I ( M I P;l (S) I M') Q;QJI2 P;1 (wM,M'), 
i, I 

(2) 

*Although the quadratic terms in the expansion give rise 
to a more rapid spin relaxation than the linear terms, a satis
factory description of the experimental results was achieved 
in[•] because the expression exp(-Ajl'r:) describing the cor
relation of the amplitudes Aj(t) of the processes Qj(t) 
= Aj(t) cos (w t + qlj) was chosen for the correlation function 
of the random processes Qj(t). 
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where Pij( WM, M') is the spectral density of the 
perturbing energy JC( 2) at the transition frequency 
WM,M'; the bar above the expression denotes 
avera~ing over the arguments of JC~M'· By treat
ing JC'- 2) as a product of independent random proc
esses < M I Pij( S) I M' > and QiQj we evaluate 
the density p(wM,M') by means of the formula[1, 2] 

+oo 
p(w)= ~ exp(iw-r)g(-r)d-r, (3) 

-00 

where g ( T) is the product of the correlation func
tions of the corresponding independent processes 
normalized to g ( 0) = 1. On assuming for the cor
relation functions the expressions [1 •2] 

gQ;Q/t) = exp (- (~1 +~,.)I 't' I) cos w,-r cos ol1T, 

gQ~ (-r) = + + + exp (- 2~1 IT I)+%- exp (-- 2~1 I -r I) cos 2w1-r, 
I 

gP{S) (-r) = exp (-\ T I -r;:-I), 

we obtain for the densities Pij( w) and Pjj( w) 

1 f...,+f...,+,;;:-1 

P,,(w) = ~ (w,+ wl-w)•+ (f..,+ 1..1+ ,;;:-1)2 

+ .!_ "'{ + ~.., + ,;;:-1 

2 (w;+ wl+ w)2+ (f..;+ l..i+ ,;;:-1 )2 

1 ~.., + ~.., + ,;;:-1 +- ----=------'---'----
2 (w;- wi- w)• +(A;+ AI+ ,;;:-1 )2 

1 A;+ I.! +,;;:-1 + - ----=----=-_!____:_ __ -:--
2 (w;- w1 + w)2-f- (A;+ AI -f- 1:;:-1)~ • 

? ,;-1 2 n,+T;:-1 
p .. ( (t)) = -3~ r + -3 -=----'-----

// ,;;:-2+ 002 002 + (2A1 + T;:-1 )2 

2A/ + ,;-1 21./ + '{-1 ----"--'---+ r • (5) + (2/..i + ,;;:-1 )2 + (~wi+ w)• (2J./ + ,;;:-1 )2+ (2wi + w)2 

The parameters Aj appearing in (4) and (5) can be 
interpreted as the probability for the dissipation 
of the vibrational energy of the complex ion. In 
accordance with [GJ, Aj ~ T c -1 for WjT c » 1, 
while the value of A j is Aj ~ 1012 sec-1. The fre
quencies Wj are of the order ~ 102 cm-1• There
fore, for WM,M' « Aj we obtain Pjj( w) R::! 10-11 sec, 
Pij( w) R::! 10-13 sec. In the case when the coordi
nates Qi and Qj are degenerate ( wi = Wj ), we 
have Pij ~ Pjj· 

2. RELAXATION IN AQUEOUS SOLUTIONS OF 
cr+ 3 SALTS 

The energy of interaction JCC2) of the magnetic 
electrons of the ion with the vibrations of Qj has 
the form* 

*The evaluation of ;):!(•) has been carried out for us by 
A. M. Leushin, to whom the authors express their sincere 
gratitude. 

:Je<2) = wl c2oi + 20~ + 2oi- o:- o:- o:) 

+ W~(2 J/~QlQ2 + 2020sl+ w;c2 }/2"Q10s + Q~- Q~) 

+ w~ (J/3Q~- Q~J/3) + w;(2Q!- Q!-Q!) 

+ 2w~Q2Q4 + w:co2o5 + Y30sQ,) + w; C020s 

-- J/3Qs0s) + w~ (2 }/2QlQ4 + 2QsQ4) + w: (2 }/2QlQ6 

+ }/3Q2Q5- QaQ5)+ w; (2 J/2"Q1Qs- J/3Q2Q6 

- OsOs) + w;'Q4Q, + \.F;Q4Qs + W~Q.Q6, (6) 

where 

W1 = A-20F(x4+y4 -f-z4 -3r4j5), 

w~ =BJ/3 (x2-y2)-20F V3(x4-y4), 

w; = B (r2-3z2)-20F (x4+ y4 ~ 2z4), 

w~ = cV3 (x2-y2) + 11 V3 (x4-y4), 

w; = C (r2 - 3z2)+ 11 F (x4+ y4-2z4), 

w: = 48F (x3y- xys), 

W~ = 48F (x 3z- xz3 ), 

W~' = 48F (yz3 - zys), 

W~ = }/3 Dxy+ 16 }/3 F (x 3y-f-xy3 ), 

w; = V3 Dxz + 16 }/3 F (x 3z + xz3 ), 

w~· = }/3 Dyz + 16V3 F (y 3z+yz3 ), 

W~ = Exy + 48F (xsy + xys), 

w; = Exz + 48F (x 3z + xzs), 

W~' = Exz + 48F (y3z + yz3 ); 

A=- !..ee'R-3, 
2 

F= ~ee'R-7 • 
ti4 

(7) 

(8) 

Here r( x, y, z) are the coordinates of the mag
netic electron of the ion; R is the equilibrium 
distance between the nucleus of the ion and the 
center of charge e' of the diamagnetic particle 
appearing in the complex ion. 

The 4F term of the free Cr+ 3 ion in the cubic 
field due to six particles Xi is split in such a way 
that the lowest orbital level turns out to be single; 
the remaining orbital levels are separated from 
the lower one by ~ 10-4 em - 1 . The matrix element 
of the perturbation JC( 2) + A LS connecting the two 
spin levels M and M' appears in the third order 
approximation and is equal to 

ae~.M' =ed(- }/3 Q2Q3 + E<Q~- Q!)) (S~· -S~·) 
+ (3s;.- S2) (- ~ (Q~- Q~) + ¥o (2Q!- Q!- Q~))] 

+ e2 I Q,Qa tSx·Su·} + Q4Q, {Sx·S,·} + Q4Qs {SvS,·} ], 

27 ( A )2(ee' ) 7 = 18 · 38ya (..!:...)2 (~X r2 -~ r<) 
81 =- R2 X R R'' 82 175R2 /J., R k 2 3~ R' · 

(9) 
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Here D. is the total splitting of the 4F term in the 
cubic field; figure brackets denote the symmetrized 
product: { ab} = ab + ba. The data of Van Vleck[ 7J 
have been utilized to simplify the expressions for 
£1 and £2 . We also note that in (9) we have omitted 
products of the coordinates Qj with different fre
quencies which, in accordance with Sec. 1, give no 
essential contribution to spin relaxation. Before 
evaluating the matrix element between the spin 
states M and M' the spin variables in (9) must 
be transformed to the laboratory system of coord
inates with the z axis parallel to the constant 
field H0: 

Sz' = YxSx; j.t, 'V, X= X, y, z. (10) 

Here aw {3 v• YK are the direction cosines between 
the axes of the moving system of coordinates 
( corotating with the complex ion) and the laboratory 
system. In averaging I JC' 12 over the sphere it is 
convenient to express aw f3v, and YK in terms of 
the Eulerian angles; in this way we can easily ob
tain 

J {.S!J.•Sv'} j 2 = is {SxSz}~,M+1; ~ (S~ ):W.M+2· ( 11) 

By combining ( 2), ( 9), and ( 11) we obtain for the 
probability of the transition M, M + 2 

WM.M+2 = (S~ ):U,M+,li-2 {81 [ ~ ( QfP22 + Q;Pss) + ¥ Q~ Q;p23 

?6~ Q4 , 19(,~)2 (Q4 Q--;j ) 1 16 2 Q2 Q? +no 2 P22 +~; 4o :; Pvv + 6 P66 I 16 82 l 4 5 P45 

+ Q~ Q~P56 + Q! Q~p46D· 
Here[BJ 

(12) 

- 4 3 1i2 liw; 
Q; =--?-2 cth22kT" (13)* 

4 (J)/ J.l; 

Similarly we can obtain the probability of the 
transition M, M + 1; it is of the same order of 
magnitude. 

In Eq. (12) we have, in accordance with (5), 
Pij ~ Pjj ~ 10-11 sec. We set Q4 = 1.5 x 10-37 cm4; 

by utilizing the values for the other constants 
quoted in['(l we have obtained £ 1 = 1, £2 = 0.1 and 
wM,M+2 ~ 5 X 107 sec-1, which is lower than the 
experimentally observed width ("' 5 x 108 sec-1 ,C 9J) 
by an order of magnitude. It should be noted in 
this connection that we have not taken into account 
the contributions to the line width due to the parts 
of :re<2> diagonal with respect to the spin which 
describe the shifts of the spin levels due to the 
oscillations of Qj. Moreover, in the perturbation 

*cth = coth. 

term :re< 2 ) we have not retained the coordinates of 
the vibrations of Q7 .•. , Q15 which are not sym
metric under an inversion. We also note that the 
values of many of the parameters are known only 
up to an order of magnitude, and, therefore, the 
agreement between the calculated and the observed 
widths can be regarded as satisfactory. 

Formula (12) gives a reasonably good represen
tation of the temperature dependence of the width 
of the resonance line of the cr+ 3 ions in an 
aqueous solution of Cr ( N03 )a where D. Ifexp is 
equal to 245, 190, 125, 107, and 105 oe respec
tively at temperatures[ 9 J of 303, 323, 373, 423, 
and 473° K. On taking D..Htheor ( 303° K) = 245 oe 
we have obtained values of D..Htheor equal to 200, 
137, 106, and 89 oe corresponding to tempera
tures of 323, 373, 423, and 473° K for Wj = 560 
em - 1 and E/k = 1250° K. 

In the case of an anisotropic g-factor or of a 
Stark splitting of the spin sublevels of the ion 
( S > 1/ 2 ) a different relaxation mechanism is pos
sible which leads to the relation[ 10•11 ] 

T!1 ~-r:rJ(l +w~.M·'t~). (14) 

In accordance with our calculation 

(15) 

As can be seen from (14) and (15), up to tempera
tures T "' nwj /2K the dependence of Tj""1 on T in 
the theories of McConnell [ 10] and McGarvey ,C 11 J 
and in the theory under discussion here, is prac
tically identical. As the liquid is heated further 
the decrease in T11 predicted by formula (15) 
will be slower than in the theories of McConnell 
and of McGarvey, and one can even expect an in
crease in Tj""1 at temperatures T » nwj/2k. Ap
parently, this case is in fact realized in aqueous 
solutions of cr+ 3 salts. 

3. WIDTH OF THE RESONANCE LINE OF cu+2 

IONS IN AQUEOUS SOLUTION 

The problem of the nature of the width of the 
resonance line of the cu+2 ion in an aqueous solu
tion deserves special consideration. The energy 
level diagram for a doubly ionized copper ion 
surrounded by six particles forming a slightly 
distorted octahedron is shown in the figure. The 
orbital levels are characterized by the following 
wave functions:[ 12 J 

(16) 

The intervals D. and o respectively amount to 
"' 104 and"' 103 cm-1• The spin sublevels arising 
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The progressive split
ting of the fundamental 20 
energy level under the ac
tion of a strong cubic field, 

~ a weak tetragonal field, -and 
-~ a magnetic field. 

~ 
-~ 

when a constant magnetic field is applied are 
characterized by the quantum numbers M = ± ~. 

We have found that the width l1 v of the reso
nance line observed as a result of transitions a, 
M = - 1J2- a, M = + ~ is determined not by the 
spin-relaxation transitions a, M = 1h - a, 
M = - 1h, excited by the combined action of 362>, 
the Zeeman and the spin-orbit interactions of the 
ion, but by the relaxation transitions between the 
orbital sublevels a and b excited under the ac
tion of :!C(2) alone with the interaction AL • S taking 
no part. 

Indeed, in accordance with the general princi
ples of quantum mechanics the width liv of the 
resonance line of the transition a, M = -1f2 - a, 
M = + 1J2, is equal to the sum of the probabilities 
of relaxation transitions from each of the sublev
els a, M = ± 1/ 2 to all the other sublevels. The re
laxation transitions between the orbital sublevels 
a, M = 1f2 - b, M = % and a, M = - 1f2 - b, 
M = -1f2 broaden the levels a, M = ± 1/ 2 in the 
same way as do the transitions a, M = + 1j2 ~ a, 
M = -1J2• However, the direct transitions a- b 
are considerably more probable than transitions 
accompanied by a reorientation of spin. The 
matrix element of the direct transitions calculated 
with the aid of (6) and (16) is in the first approxima
tion: 

:Je!ilb = a ( Q;- Q~) + bQ2Qs + cQsQo; 

= 9V3 (A _ 825 A ) a 8 1 8 2• 

a = - 3~ = 2/21. (17) 

[The probabilities of the transitions a- c, d, e, 
which are proportional to the Boltzmann factors 
exp (-l1/2kT ), are small and are therefore not 
considered.] At the same time the matrix element 
for the transitions accompanied by a reorientation 
of spin a, M = Y2 ~ a, M = -% arises only in the 
third approximation taking into account the ener
gies of the Zeeman and the spin-orbit interactions 
of the ion: 

3fa,1/,;:_a,- 1f, ~ (f.,g~H0/f12 ) :Je!iJ = 10-S;Je~?J · (18) 

We also note that the contribution to the width 
made by spin-relaxation transitions will be pro
portional to the square of the field H0, while the 
contribution of the direct transition a- b is in
dependent of the field; experiments also did not 
show any apparent dependence of the width on the 
field. [19 J 

We now evaluate the probability of the transi
tion a- b. The matrix element (17) is invariant 
under rotations of the complex ion; therefore, in 
writing down the probability of the transition 
a- b we should set T r = oo in formulas (5). 
Moreover, the transition frequency wab ~ 103 

em - 1 is large compared to Aj, so that 

P/i = 4f.,Jf3w~6 + 2f.,Ji(wab- 2w,)2 + 2f.,Ji(wab + 2w1)2 , 

PtJ = ')..,/ (2fw~b + (wab- 2w,t2 + (wab + 2w,t2). (19) 

By utilizing (2) and (17) we obtain for the probability 
of transitions a- b 

Wa.b = n,-2 [a2 (Q!Pss + Q:rss) + b2 Q; Q~P2a 
+ c2Q~ Q~P4sl r;'0/2kT. 

The temperature dependence of (20) is given by 
the relation 

(20) 

Wa,b ~ exp (- fJf2kT) cth2 (1iwJ12kT) ')..,1, (21) 

with Aj ""exp (- E/RT) where E is a parameter 
which has the significance (and the order of mag
nitude) of the viscous barrier for the liquid. [6] We 
set o = 103 cm-1, 1iwj = 500 cm-1, E = 2 kcal/mole 
= 700 cm-t, then in accordance with (21) the 
probability wa,b increases by approximately a 
factor of 4.2 as the temperature of the liquid 
varies from 300 to 400° K. In accordance with 
Kozyrev's experiment, [s] an increase in the line 
width by a factor of 1.8 is observed within the 
same temperature interval, and this is close to 
the calculated increase in width. The order of 
magnitude of (20) also agrees with the width ob
served in an aqueous solution. By setti!!g, in 
~reement with Van Vleck,[7] R = 2A, r 2 = 4.4 a~, 
r4 = 31.2 ag e' = e, we obtain I a I = 2.4 x 104, 

I b I = 6 x 104, I c I = 103; further, at T = 350°K 
we have /Jf = 3 x 10-23 g( the mass of a molecule 
of water), Wj = 500 cm-t = 10t4 sec-t and Q4 
= 1.5 x 10-37 cm4; finally, on taking Pij ~ 2Pij 
~ 10-16 and exp (-o/2kT) ~ 0.1, we obtain wa,b 
~ 5 x 109 sec-t. 
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