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Dispersion relations for the invariant nN amplitudes similar to those used by Bowcock et 
al [ 7] are considered. The relations contain additional subtractions in the energy s (one sub
traction) and momentum transfer t (two subtractions). They are regarded as integral 
equations with kernels dependent on the S, P, and D wave 1r1r scattering amplitudes. All 
quadratures obtained in the solution of the integral equations are evaluated for a simple 
phase shift model which is a generalization of the effective interaction range approximation. 
Simple analytic expressions for the contribution of 71'71' interaction to the 1rN amplitude are 
obtained. It is shown that in previous calculations [3- 9] the convergence of the integrals along 
the cut t ~ 4 j.J. 2, where IJ. is the pion mass, is not sufficiently rapid; conclusions based on 
these calculations are therefore not reliable. 

1. INTRODUCTION 

SEVERAL attempts have recently been made to 
calculate the 7rN amplitudes for small values of 
the invariants s and t on the basis of the Mandel
starn representation.[! •2] The solution of this 
problem would relate the 71'71' -scattering, 
7rN -scattering, NN -scattering, and nucleon elec
tromagnetic form factors. The simplest way of 
solving this problem is to use dispersion relations 
to extrapolate the 7rN amplitudes from the 7r + N 
- 7r + N scattering channel where the imaginary 
parts of the amplitudes are known from experi
ment.[3-8 J Then the use of unitarity in the two
meson approximation for the N + N- 7r + 7r anni
hilation channel turns these relations into simple 
linear integral equations; the solution of these 
equations is in the form of quadratures dependent 
on the 71'71' scattering amplitudes. 

The main defect of the previous calculations is 
the insufficiently rapid decrease of the integrands 
in the integrations along the annihilation cut t 
~ 4 IJ. 2, where t is the square of the total energy 
in the annihilation channel and IJ. is the pion mass. 
As a result, the calculations are inconsistent since, 
on the one hand, the use of unitarity in the two
meson approximation assumes that we are con
cerned with only small values of t, while, on the 
other hand, the integrals obtained in the solution 
of the equations depend strongly on the behavior 
of the amplitudes for large t. Moreover, in sev
eral papers[3- 6] numerical integration was used 
to carry out the calculations; this makes the con-

sideration of the various problems requiring a 
knowledge of the 7rN amplitudes very complicated. 
We note also that Efremov, Meshcheryakov, and 
Shirkov[s] made use of a patently incorrect sim
plification in their equations (see below); as a 
result, their results must be revised. 

Bowcock, Cottingham, and Lurie[ 7J ( see also 
[SJ and [ 9]) obtained simple analytic expressions 
for the 7rN amplitudes in a model with a sharp 71'71' 

resonance; however, this was achieved at the 
price of not using the correct solution of the inte
gral equations. For this reason it is not clear 
whether the contributions they obtain from the cut 
t ~ 4 IJ. 2 are consistent with the two-meson ap
proximation or not, i.e., whether they are a conse
quence of 71'71' interaction or of heavier intermediate 
states in the unitarity condition. 

In this work we attempt to improve the method 
used in [ 7] by introducing additional subtractions 
and correctly solving the integral equations thus 
obtained. In a simple 71'71' phase model which is a 
generalization of the effective interaction range 
approximation, all the integrals are evaluated and 
simple analytic expressions are obtained for the 
contributions from the cut t ~ 4 IJ. 2• In this model 
the 71'71' interaction is specified by a number of 
parameters which are unknown at present. The 
scattering length[3 •4 •6] and Breit-Wigner reso
nance [ 7- 9 J approximations used previously are 
special cases of our model. The 1rN amplitudes 
we obtain can easily be used in various problems 
involving nucleons and pions; this will be done in 
separate papers. 
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2. EQUATIONS FOR THE INVARIANT 1rN 
AMPLITUDES 

We use the system of units in which 11 = c = 11. 
= 1 and the following notations for the invariants 
( see Fig. 1) : 

t = (p + p')2 , v = (p- p') (k- k')/4m, 

s = (p + k)2 = m2 + 1 - t/2 + 2mv, 

u = (p + k') 2 = m2 + 1-t/2-2mv, 

e = 0.15, k2 = k'2 = I. 
( 1) 

In the 1T + N -1r + N channel the invariant s is 
related to the total energy w of the incident pion 
in the laboratory system of coordinates by 

w = (s- m2 - 1)/2m. 

In cons ide ring the 1rN amplitudes in the annihi
lation channel, it is convenient to use the variables 
X and B (the square of the pion 3-momentum and 
the angle between the vectors p and -k, respec
tively, in the center-of-mass system in this chan
nel), which are related to t and v by 

t = 4 (1 + x), (1') 

v = Vt!4m2 - 1 Vt!4 - T cos e. 
The pion-nucleon amplitude is specified by the 

invariant functions A(±) and B(±) ( in the usual 
notation[to,H]), which satisfy dispersion relations 
in v ( or, equally, in s) for fixed momentum 
transfer t. We use these relations as a starting 
point. Instead of A(±) we consider the functions 
with definite helicity[12 ,13] 

p<±> = (1- t/4m2) A<±> + vBL£l, (2) 

which, as will be apparent in the following, have 
some advantages over the A(±). 

The dispersion relation for F<+> is 

p<+>(v, t) = pr>(v, t) + p<+>(o, t) 

00 

1 \ +-
n ·~ 

(+) [ 1 
ImF (s',t) s'-s(v,l) 

(m-i-1)' 

_l 1 2 ]dl 
T s'-u(v,l) - s'- s(O,t) s ' 

where the notation for the pole terms is 

( 3) 

B<±> = g2( 1 
P r m2- s =f m2 ~u ) · 

with g~ = 47T~, ~ = 14.5. 
We consider the analytic properties in t of 

Im F<+>( s', t) and of the subtraction term 
F<+>( 0, t). The subtraction term has the cuts t 

(4) 

~ 4 and t ::s - 4m, and Im F<+> ( s', t) has cuts for 
t ~t(c13 ) ~4 and t ::St( c12 ) < -4m, where c12 

and c13 are the boundary curves in Mandelstam's[t] 
notation. The contributions from the left-hand cuts 
can be expanded in powers of t; this gives a series 
in powers of I t/teff I < It l/4m = E 11 + xI. Keeping 
just two terms of this expansion and combining 
them with similar terms from the right-hand cuts 
(which is equivalent to using a dispersion relation 
in t with two subtractions), we obtain 

p<+> (v, t) = F~+> (v, t) + :J<+> (0, t) 
00 

_L _:I_ \ Im ;r<+> (s 1 t) [ 1 
' n ~ ' s'- s (v, t) 

(m-j-1)' 

1 2 J d I + s'-u(v,t)- s1 -s(O,t) S 

00 

f 2 \' (+) 1 df' 
+nJFann(v,i) (t'-l)l'• , 

4 

g;<+> (0, t) = p<+> (0,0) + t [ :, p<+> (0, t) J=o' 

(5) 

lm g;<+> (s', t) = Im p<+> (s1 , 0) + t [ :, Im p<+> (s 1 , t) J l=o 

(6) 

which is accurate to order E2 ( 1 + x)2• 

The last term in Eq. (5) gives the exact contri
bution (with two subtractions) of the cut t ~ 4; 
Fft"'rin signifies the annihilation part of the absorp
tive part of the amplitude F<+>. For t ::s 16 only 
two-meson states contribute to Fft+Jn; their contri
bution can be obtained by extrapolating Im F<+> 
from the physical region of the N + N - 1T + 1T 

channel.[! •14] The extrapolation can be carried out 
by means of an expansion in Legendre polynomials 
P 1 (cos if) .[ts] This expansion in annihilation har
monics is equivalent to a series in powers of 
[ v/ v ( c13 ) ]2 and converges in the region between 
the boundary curves* c13 : 

v (cia);;> 2,75. 

For accuracy of order ::s ( v /2.75) 2 we can keep 
just the lowest harmonic; by using unitarityt this 

*The minimum value (equal to 2.75) of von the curve C13 

occurs for t = 4.5 m. 
twe note that the unitarity condition for the functions (2) 

has the same form as in the scalar theory and leads to the 
simple expressions (7) and (10). 
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can be expressed in terms of the S wave phase 
shift o 0 ( x) for 11"71" scattering: 

F~+;n (v, x) = e-18•<x> sin 6o(x) pr> (x). ( 7) 

In Eq. (7) and in the following we use the notation 

(Fj=> (x); Bj±>(x)) 

1 

=} ~ P1 (cosli) (F<±>(cos fi,x); B<±> (cos e, x}) d coslf 
-1 (8) 

for the annihilation harmonics. 
For the other invariant amplitudes we obtain 

00 

B<+> (v t) = B<+> (v t) + _!___ \ Im 5a<+> (s' t) [ 1 
' P ' n J ' s'-s(v,t) 

(m+l)' 
00 

1 J d , 12 \' (+) , dt' 
- s'-u(v,t) s + n J Bann (v, t ) (I'- t) 1'2 ,, 

4 

00 

+ 1 \' I :f<-> ( , t) [ 1 1 n J m s' s'-s(v,t) - s'-u(v,l) 
(m+1)' 

00 

4v J ds' 12 \' p<-> ( , dt' 
- (s'- s(0,/))2 + n J ann v, t ) (I'- t)t'•' 

4 

00 

1\ <-), [ 1 1 +-;:t .\ lmfB (s,t) s'-s(v,t)+s'-u(v,t) 
(m+1)' 

00 

2 ] , 12 \' (-) , dt' 
- 5 ,_ s(O,t) ds + n .\ Bann (v, t) ·(1'-1) 1,2 , 

4 

( 9) 

where ;fH and fB(±), as inEq. (6), denote two 
terms in the expansions of F<-> and B(±) in 
powers of t. We note that for the amplitudes FH 
and B <-> it would be possible to make no subtrac
tions in the energy variable, but in this case the 
original dispersion relations would contain arbi
trary terms va ( t) and b ( t) of the same form as 
the subtraction terms.E11J Thus, the introduction 
of subtractions to improve the convergence of the 
integrals over the energy does not increase the 
number of unknown parameters. 

The lowest harmonics of the functions Fi"rin 
and B~'i1n are expressed in terms of the P and D 
wave 71"71" scattering phase shifts o1 ( x) and 02 ( x) 
by 

B~~ln (v, x) = 3ve-15•<x> sin 62 (x) [B~+> (x)- B~+>(x) ]/ W V- x, 

F~]n (v, x) = 3ve-15•<x> sin 61(x) pr>(x)IWY -x, 

B~]n (v, x) = e-18•<x> sin 61(x) [Br> (x)- Bf> (x)], 

W = y!.:_ e2 (1 + x). (10) 
The extrapolation of the functions (10) from the 
physical region of the N + N- 1r + 1r reaction to 
the region x ~ 1 is made on the upper side of the 

cut x =::: 0 ( t =::: 4), where we take W( -x)1fl 
=-ilW(-x)V2 J. 

Equations (5) and (9) are similar to those used 
in [f]; they differ only in the presence of additional 
subtractions. The subtraction terms in (5) and (9) 
can be expressed in terms of the S, P, and D 
pion-nucleon scattering lengths (see the Appendix); 
in F(±) they can be expressed in terms of only the 
S and P scattering lengths. The s' integration is 
over the physical region for 1rN scattering along 
the line t = 0, s' =::: ( m + 1 )2; the main contribution 
comes from energies of several hundred Mev, 
where the 1rN amplitudes are rather accurately 
known. 

For numerical calculations it is essential to 
express the first term in the expansion of 
Im F( ±) ( s', t) in powers of t in terms of the 
total cross sections at ( 71"(±) p) for 7r(±)p inter
actions: 

lm p<±l (s, 0) = lm ;t<±l (s, 0) = Ec.m.Pc.m. [O't (n-p) 

± a1 (n+p) ]f2m. (11) 

Here Ec.m. and Pc.m. are the total energy and 
momentum in the center-of-mass system. This 
procedure gives significantly higher accuracy 
than calculating with the 1rN phase shifts. 

The relations (5) and (9) are thus equations of 
the form 
(F<±> (v, t); B<±> (v, t)) = (1·<±> (v, t); jj<±> (v, t)) 

~ (f< ± l (v I')· B< :t l ( I')) dl' [2 r al'ln I I ann vI 

-j- n J (I'- I) t' 2 

(12) 

4 

where F(±) and :B'(±) are known functions without 
singularities on the line t = 4 and F~'i1n and B~'i1n 
are certain integrals of F(±) and B(±). By solving 
these equations we obtain the amplitudes for small 
values of the invariants with an accuracy of order 

J t \2!l6m2 , (13) 

due to the expansions used above.* 
Similar equations were obtained by Ishida et 

al.[4J They differ from (5) and (9), however, in 
that they contain integrals of ImA(±) and Im B(±) 
in an unphysical region along the line u = const, 
s =::: ( m + 1 )2; it is therefore difficult to estimate 
with sufficient reliability the contribution from 

*We emphasize that the parameters in (13) define the ac
curacy of the solution of the problem within the two-meson 
approximation; the study of the conditions under which the 
latter is applicable is the self-consistency question. From 
general considerations one can expect that higher-mass in
termediate states in the unitarity condition will give addi
tional contributions of order (t/16)2 and (t/4m)2 • 
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that part of the region of integration where they 
used an incorrect expansion in Legendre poly
nomials. 

3. SOLUTION OF THE EQUATIONS 

When Eq. (12) is written in terms of the annihi
lation harmonics (8) with the substitutions (7) and 
(10), it has the form of a well known integral equa
tion[tS,ts] whose solution can be written in terms 
of the auxiliary function ( meson form factor) 

- [X- G r 6, (x')dx' J 
(jlt (x) - exp ~ J (x'- x) (x'- 1;) • (14) 

0 

A subtraction at some point ~ is used to improve 
the convergence for x' ---. oo. In order to calculate 
(14) we approximate the 1r1r phase shifts by 

x' Vx ctg Oz (x) = X (x), (15)* 

where X( x) is a polynomial of arbitrary degree. 
The phase shift (15) corresponds to the 1r1r ampli
tude 

'A, (x) = ix1 V -x/(X (x) + x1 V -x}, 

f'r> (x) = ff<+> (0, x) 

+ eg~ [ _ 1 + e 11 + 2x) In_ e (1 + 2x) + 2W y="X Jl 
4 WY -X e (1 + 2x)- 2W f- X 

+ _2_ r lm g-(+) (ro, Y) [ ffi + E (1 +X) 

:rt J ffi + e (1 + x) 2W -v=x 
1 

Xln ro+e(1 +x)+Wy=x -I]dw. (19) 
ro+e(1 +x)- W Y-x 

For the higher harmonics F[+> ( x) = F'[+ > ( x). The 
subtraction term in (19) can be expressed in terms 
of the experimental 1rN amplitude with an accuracy 
of E2 ( 1 + x) (see the Appendix); it is 

ff<+> (0, x) = eg~a (x), a (x) = 0.95 + 0.2 (1 + x). (20) 

The last term in (19) can be neglected, since it is 
a correction of order :::: E2x to the subtraction 
term, as can be seen by expanding the integrand in 
powers of 

lro~~~x)\ 2 ~~roeftW+~~x) 1
2 ~ex (21) 

and calculating the lowest order term (the value 
weff R=~ 2.4 corresponds to the 33 resonance). 

1..1 (x + iO) = ei8t <x>sin o1 (x), (16) The integration over x which remains in (18) 

defined on the whole plane with a cut for x ~ 0 and 
poles at the points x = Xk ( k = 1, 2, ... n) which 
are the roots of the equations X(x) + xJ ( -x)1f 2 

= 0, Re ( - x) 1f2 ~ 0. Generally speaking, these 
poles have no physical significance, but just rep
resent the effects of the left-hand cut x :::: -1, 
which the "true" 1r1r amplitude with the correct 
analytic properties must have. 

Substituting (15) into (14) and transforming the 
integral into a contour integral around the cut x 
~ 0, we obtain 

We consider now the solution for F<+>, which 
can be written in the form t 
F~+> (x) = 'fir> (x) + <1 ~;)2 qJs (x) 

()() 

X~ 
0 

f~+) (x') (~p~1 (x'- iO) -~p~1 (x' + iO)) dx' 

(x'- x) (1 + x')2 

*ctg =cot. 

(18) 

tThe solution (18) is unique if we require that F~+>(x)/ 
x~ cp8(x) go to zero as lxl becomes infinite; this is fulfilled if 
we require that the function F~+>(x)/cp8 (x), which has no cut 
for x .2: 0, satisfy a dispersion relation with two subtractions 
<cr.["]). 

can be put into a form analogous to the integration 
in (14) by noting that 

-2x1y="X 
n;:=l (x-xk) 

is the analytic continuation of the functio11 

(22) 

qjj1 ( x- iO) - qjj1 ( x + iO) to the whole plane with 
the cut x ~ 0 and coincides with it on the upper 
side of the cut. Summing all the harmonics in re
verse, we obtain finally 

F<+> (v, x) = p<+> (v, x) 

+ ieg~'As (x) {a (x} - 1 + e (1 + 2x) 
2V-x 

X In ( 1 + 2x + 2 ~ ) + L~~1 (x)/ V=X'} , (23) 

where the polynomial Lh~\ ( x) of degree n + 1 is 
found from the conditions that the expression in 
the curly brackets vanish at the points x = - 1 
and x = Xk ( k = 1, 2, ... , n) along with its first 
derivative at the point x = - 1.* The conditions at 
X = - 1 are equivalent to the presence of two SUb
tractions in (18). In the integration of the loga
rithmic term in (19), W has been replaced by unity 

*For actually calculating the polynomial L~8}1 , it is con
venient to write it in the form L 1(x) + (1 + x) 2 Ln-l (x), where 
the first degree polynomial L 1 (x) is first determined from the 
conditions at x = -1, i.e., it is independent of the Xk. 
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and the contribution from the cut x ~ - m 2 

( t ~-4m2 ) which remains after the integral in 
( 18) is transformed into a contour integral has 
been dropped; this gives an accuracy of E2 ( 1 + x). 

We call attention to the compensation of the sub
traction and pole (of order Eg~) terms in (19) and 
(23); these appear in the combination* a( x) - 1 
~ E ( 1 + x). A similar compensation also occurs 
in the subsequent terms of the expansion (7) which 
depend on D-wave and higher 7T7T phase shifts. 
This makes the contribution of 7T7T interaction to 
F<+> smaller by an additional factor E: and in
creases the relative error due to the corrections 
that have been neglected in calculating this contri
bution. This compensation shows that in no case 
may one neglect the contribution of B <+> to the 
absorptive part in the equation for A<+>, as was 
done by Efremov, Meshcheryakov, and Shirkov[6] 

[see Eq. (5.3) in their first paper]. Notwith
standing this fundamental distortion of the equa
tion, they obtained the same S-wave 7T7T scattering 
length as was obtained in papers by Sa to et al [ 3] 

and Ishida et a1PJ where this contribution was in
cluded. This is apparently a consequence of the 
fact that in both cases the main contribution comes 
from the region of impermissibly large values x 
;::. m, where this compensation does not occur. 

The solutions for the other invariant amplitudes 
can be obtained in a similar way. Thus, for B<+> 
we expand the additional absorptive part in powers 
of E ( 1 + 2x)/2x1/l and keep just the lowest order 
term to obtain 

B<+> (v, x) = [j<+J (v, x) + 5ivetfr'Av (x) {x-1 

(24) 

where the polynomial L}i>+l ( x) is determined in a 
manner analogous to that in which L~~1 ( x) is de
termined. For simplicity we denote the number of 
poles in the D-wave 7T7T scattering amplitude by 
the same letter n that we use for the S wave am
plitude. Since the absorptive part vanishes like 
x!¥2 near x = 0, the expansion in powers of 
E ( 1 + 2x)/2x1fl does not, in practice, introduce 
errors near x = 0; it provides an accuracy of Ex112 

for the integration region x ~ 1. Corrections of 
order E to the contribution of the D-wave scatter
ing to B<+> need not be taken into account, since 
they are of the same order of magnitude as the 
D-wave contributions to F<+>, which we neglected. 

*This result was obtained previously for the amplitudes at 
the point v = 0, t = 41L 1 where they determine the peripheral 
interaction. [ 17 , .. ] 

The solutions for F<-> and B<->, which depend 
on the P-wave 7T7T scattering, are expressed in 
terms of the annihilation harmonics 

w ~ -x :ff>1 (x) = 3~0 w<-> (vo, x) - ;rr> (vo, x) Jj v,=o 

e2g; ,(1 + 2x) [ 1 - E (1 + 2x) In E (1 + 2x) + 2W v=x] . 
+ zw•x 4W v -x e(1 +2x)-2W V-x 

(25) 
srr (x) - [jfl. (x) = ga<-) (0, x) - gar> (0, x) 

3cg; {1 + e2[4x I E (1 + 2x) + 2W v=x e (1 + 2x)} 
+ 4W2 W -v=x n e (1 +2x)-2W V-x- x ' 

(26) 

where we have dropped t?e terms similar to the 
last term in (19), since they are corrections of 
order E2x to (25) and (26). We obtain finally 

Fn (v, x) = p<-> (v, x) + 3iv'Ap (x) (f (x) 

+ Ll,;~1 (x)/ x J/=X}, 

Bn (v, x) = sn (v, x) + i'Ap (x) {b (x) 

+ M~1 (x)lx J/=X}, 

where f(x) and b(x) denote the functions (25) 
and (26) with the additional replacements 

w """"""* 1, 

(27) 

(28) 

In e (1 + 2x) + 2W y=x """"""* 2 In ( 1 + 2x + 2 V- x-) 
e(i + 2x) -2W V-x e (29) 

The polynomials in (2 7) and (28) are determined 
analogously to those in (23) and (24). 

We call attention to the fact that (25), like (19), 
is decreased by a factor of order E. However, 
this is due to the smallness of both the subtraction 
and pole terms and not to their compensation; 
therefore this factor should apparently also occur 
in the corrections we have neglected in obtaining 
the original equations [see the derivation of 
Eqs. (5) and (9) ]. In this case, the main error in 
(25) is due to the error in the subtraction term 
which amounts to a correction of order E: ( 1 + x)/.3 
to the pole term and must be set equal to zero for 
the accuracy stated above (see the Appendix). 

Comparison of the amplitudes in Eqs. (23), (24), 
(27), and (28) with Eq. (12) shows that the solution 
of the integral equations actually amounts to a 
calculation of the contribution to the 1rN amplitudes 
from the annihilation cut t ='= 4 due to 7T7T interac
tion. 

We now discuss the convergence of the integrals 
over the annihilation cut which we obtained in the 
solution; this convergence, along with the errors 
in the integrands, determines the accuracy of the 
calculations of the 1r1r -interaction terms. The 
solution of Eq. (12) in the two-meson approxima-
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tion, i.e., with the absorptive parts (7) and (10), is 
logically justifiable only if the result is independent 
of the behavior of the amplitudes in the region 
where they are not known, which is the region x 
~ m ( t ~ 4m). Clearly this requires sufficiently 
rapid convergence of integrals of the type (18) in 
the region x < m, and thus a corresponding be
havior of the harmonics like (19) and the auxiliary 
functions like (22). In this latter region we have 
effectively 

~(+) 

Fo -X, 
~(+) ~ (+) -,,r--

[Bl - Ba I I W r - x ~ 1/x, 
(30) 

FP ;w}l=x~const, 

and therefore convergence of the type dX /x 5/ 2, 

for example, which would give a contribution of 
order E3f2 from the region x'~ m, requires the 
presence of at least one pole in the 11"11" amplitude 
(16). Only poles which lie sufficiently near im
prove the function (22) in the region x' < m. This 
shows the importance for the "true" 11"11" amplitude 
of the left-hand cut x :s - 1, which is represented 
in the model (15), (16) by unphysical poles. 

It is also not hard to see that the previously
considered simpler scattering length[3 ,4 >6] and 
sharp 11"11" resonance[ 7 9] models lead, in a scheme 
with one subtraction in t, to integrals of the form 
dx /x 1f2 for x < m; a large contribution must 
therefore come from the impermissible region of 
integration m .s x _s m 2, where the quantities in 
(30) are replaced by factors that converge some
what more rapidly. For these models, the intro
duction of a second subtraction, like that used in 
the present work, leads to convergence of the 
form dx' jx''J/2 in the region x' < m and makes 
possible the calculation of the 11"11" terms with an 
accuracy of E1f2. Then corrections of order 
E ( 1 + 2x)/2x1f2 must be neglected in (25) along 
with corrections of order E2 ( 1 + 2x)2/4x in (26); 
this is equivalent to substituting in Eqs. (27) and 
(28) 

r (x) = e2g; (1 + 2x)/2x, 

r; <x> = 9a<-> (o, o) - !Br> (O, o) 

+3el,~ 2 In(l + 2x+2li-x)_e(1+2x)}. (31) 
4 1]1-x e x 

4. CONCLUSIONS 

1. The method used in the present work allows 
us to obtain the invariant 1rN amplitudes in the 
two-meson approximation with an accuracy of 
about ( t/4m )2; consequently, in the calculation of 

the contributions from the 11"11" interaction we have 
neglected corrections of order E2 ( 1 + x )2 and E2• 

However, the amplitude p<+> [Eq. (23)] is de
creased by an extra factor E due to compensation 
of the 11"11" terms, and its relative accuracy is 
therefore determined by the parameters E and Ex. 
The 11"11" term in the amplitude B <+> [ Eq. (24) ] is 
small because of the small D -wave 11"11" ~scattering 

amplitude and therefore corrections of order E 
and Ex have been dropped in calculating it. The 
relative accuracy of the 11"11" terms in (27) and (28) 
is determined by the parameters E2 and E2x2• 

2. The accuracy described in item 1 is attained 
only for "good" meson form factors which provide 
sufficiently rapid convergence of the integrals 
along the annihilation cut t ::::: 4 and thus lead to 
relatively insignificant contributions ( .s E for p<+> 
and B<+> and ~ E2 for p<-> and BH) from the 
region of integration t ~ 4m. The behavior of the 
form factors is improved by singularities of the 
11"11" amplitude in the unphysical region within a 
radius I x I < m. In the worst case the 11"11" terms 
have an approximate accuracy of E 1/2 or (Ex) 1f2. 

3. Peripheral 1rN interaction is due to the con
tribution from the s-wave 11"11" -scattering amplitude. 
The reduction of this contribution to p<+> because 
of the compensation described above must make it 
more difficult to fulfill the conditions under which 
the asymptotic formulas [l 7] can be applied for the 
partial amplitudes with large angular momentum 
l. The disagreement[17J of the theoretical and ex
perimental l = 2 phases is apparently a conse
quence of the fact that the role of terms neglected 
in the calculation, namely B<->, which is due to 
P -wave 11"11" scattering, and further peripheral 
terms such as four-meson terms and pole-terms, 
is sharply increased by the compensation. 

4. In previous calculations [3- 9] the integrals do 
not converge rapidly enough, and the 11"11" terms 
must depend in an essential way on the amplitudes 
in the region It I~ 4m in which the behavior of the 
amplitudes is not known at present. Therefore, 
conclusions concerning the 11"11" interaction drawn 
on the basis of these calculations must be con
sidered unreliable.* 

The authors are grateful to B. L. Joffe, I. Ya. 
Pomeranchuk, and K. A. Ter-Martirosyan for dis
cussions and useful comments. 

*Ball and Won_g,[1•] have also shown that the results of 
Frazer and Fulco L•J are unreliable and that subtractions must 
be introduced. 
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APPENDIX 

CALCULATION OF SUBTRACTION TERMS 

The subtractions at v = 0 which enter the orig
inal dispersion relations can be expressed in 
terms of subtractions at s = s 0 = ( m + 1 )2 by 

p<+> (0, t) - pr> (0, t) = p<+> (s0 , t) - F~+> (so. t) 

2 ( t )2 r lm p<+) ( Cil, I) dCil 
-"""it 1 + 4m l (Cil -1) (Cil + t 14m) (Cil + 1 + t I 2m) ' 

1 (A.1) 

1 p<-> (s0 , I)- pp<-> (s0 , I) 
-'\1

0 
[F(-) (vo, t) - p<P-> (v t) ll 0 ' ••=0 = 1 + t 1 4m 

co 
2 ( t )2\ Imp<-> (Cil, t)dCil 

- n 1 + 4m .) (Cil -1) (Cil + 114m)2 (Cil + 1 + t,2m). 
1 (A.2) 

The analogous relations for B<- > are obtained 
by replacing F<+> in (A.1) by B<->. By keeping just 
two terms in the expansion of (A.1) and (A.2) in 
powers of t, we obtain the relations we need for 
the functions .f(±) and 5iJ<->. Thus, for example, 
for .f<+> we have 

.f<+> (0, t) = .f<+> (so. t) - 2rr> (so. t) 

_ ~ f Im g:-<+> ( Cil, I) dCil _ _ t_ r im g:-<+> ( Cil, 0) (2Cil + 1) dw 
n J w(Ci12 -i) 2nm.) w2 (Ci1+1)2 • 

1 1 
(A.3) 

The main contribution of the integral terms in 
(A.3) can be expressed in terms of the 7TN cross 
section20 by using (11); this gives a value -0.10 
- 0.02 ( 1 + x). In calculating the remaining part 
of the integral terms we consider just the resonant 
33 phase shift[21]; this gives -0.08(1 +x). The 
first term in (A.3) is expressed in terms of the S 
and P scattering lengths by 

.f<+> (s0 , t)/4rr. = + (1 + e) (2a3 + a1) 

+ : (1 + x) (1 + e) [2aaa + aa1 + + (2ala + au>J. 
(A.4) 

The lengths a3, a 1, a 33 , and a31 are quite accurately 
knownP1 22 ] but reliable values of a 13 and au are 
not available and we neglect them. This gives an 
error which we estimated by using the 200- to 300-
Mev data[22 ] and assuming the P phases to vary 
with energy as PLm.; this gave a contribution to 
(A.4) of order E2 ( 1 + x). Substituting also the 
pole term, which gives the main contribution to 
(A.3), we obtain finally 

.f<+> (0, x) = ei, a (x), a (x) = 0.95 + 0.2 (1 + x) (A.5) 

with a relative error of order E2 ( 1 + x). 
In a completely analogous way we obtain 

_!__ w<-> (vo, X)- .fr> (vo, X)]iv,=o = eg~(a + b (! + x)], 
"o 

lal, lbl~e2 • (A.6) 
In the subtraction term 5iJ<-> ( 0, x) - 5iJ~> ( 0, x) 

the main contribution comes from the term 

5iF> (so, x)/4rr. = + e (a1 - aa) +fm (aaa- a31 +an- ala) 

- (1 + x) [e (a33 - ata) - 4m (das- daa + d13- d15)l. 
(A.7) 

We neglect the dependence of (A. 7) on the D 
lengths d. To estimate the error thus introduced 
we use the analysis of the data at energies above 
300 Mev[23] and assume that the D phases vary 
with energy as Ptm. This gives a D -length con
tribution of order E2 ( 1 + x) to (A. 7). Therefore 
the main error comes from the contribution of 
au- a 13 which we do not take into account and 
which apparently amounts to not more than 20%. 
We obtain finally 

[53<-> (0, x)- 53~-> (0, x)l/4rr. = 0.9 + 0.3 (1 + x) (A.8) 

with an error of A+ b ( 1 + x), I A I ~ 0.2, I b I ~ E2• 
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