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It is assumed that the interactions between elementary particles are characterized by an 
effective range that depends only on the mass of the particles transmitting the interaction. 
It is shown that if all masses (and consequently interaction ranges) are fixed, then uni­
tarity and analyticity limit the possible values of the 1rN interaction coupling constant, as 
well as the absolute value of the 1r1r scattering amplitude at zero energy (in the case when 
the latter is negative). The proof is carried out by means of dispersion relations for the 
inverse of the forward scattering amplitude. 

1. INTRODUCTION 

IN modern field theory particle masses and coup­
ling constants between fields describing these par­
ticles appear as independent quantities, whose val­
ues must be given by experiment. This is true both 
of the Hamiltonian form of the theory, where re­
normalization is performed in such a way as to 
make the renormalized charge and mass the same 
as the observed ones, and of the dispersion rela­
tions approach, in which the location of the singu­
larities of the scattering amplitude and the resi­
dues of the pole terms are identified with the ex­
perimental values of the particles' masses and 
coupling constants. One might, however, ask the 
following question: could not the values of the par­
ticle masses impose some restrictions on the 
coupling constants? The example of nonrelativistic 
theory with point interaction shows that such a sit­
uation is possible; in that example the magnitude 
of the renormalized coupling constant cannot be 
in excess of a certain critical value, determined 
by the masses of the particles.C1•2J 

In the relativistic theory no such precise limi­
tation can be proved. This is related to the cir­
cumstance that the interaction between particles 
is effectively smeared out by the existence of 
virtual processes. On the other hand, it has been 
assumed in field theory, beginning with Yukawa, 
that if an interaction is due to the exchange of a 
particle of mass fJ. then the effective range of the 
interaction. is of the order of ti/ f.J.C, regardless of 
the interaction strength. If one accepts this point 
of view, i.e., if it is assumed that the range of the 
interaction is determined by the masses only, then 
it becomes possible to deduce limitations on the 
coupling constants. 

In this paper we consider scattering of 1r me­
sons by nucleons. Analogous considerations are, 
apparently, valid for other processes (for ex­
ample scattering of K mesons by nucleons), how­
ever the existence of unphysical regions in the 
dispersion relations for these processes compli­
cates their analysis. 

We find it convenient to make use of dispersion 
relations for the inverse of the forward scattering 
amplitude. These dispersion relations possess a 
number of peculiar properties, although mathemat­
ically they are a consequence of the direct disper­
sion relations. In the first place, they are sensi­
tive to the zeros of the scattering amplitude. The 
number of these zeros is limited; it is shown be­
low that if the high energy behavior of the cross 
section does not differ much from a constant, then 
the forward scattering amplitude of charged pions 
on nucleons can have in the complex plane one, two 
or three zeros; the 7r7r-scattering amplitude either 
has no zeros, or has one or two zeros; the Compton 
effect amplitude has no zeros. In the second place, 
although the "inverse" dispersion relations are an 
identity with respect to the coupling constant, in 
distinction to the usual dispersion relations they 
do not represent a term by term identity after the 
integrands have been expanded in a power series 
in the charge. 

In addition to restrictions on the coupling con­
stants, i.e., on the residues of the pole terms in 
the scattering amplitudes, it also turns out to be 
possible to obtain restrictions on the scattering 
amplitude at zero energy (scattering length) when 
the latter is negative. In conclusion we discuss the 
following question: might not the observed pion­
nucleon interaction coupling constant have the max­
imum value allowable by the prescribed masses? 
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It is possible to give certain indirect argwnents 
in favor of such a hypothesis. 

2. SCATTERING OF 1r0 MESONS ON PROTONS 

Let us consider first scattering of 1r0 mesons 
on protons. This case is simpler than the scatter­
ing of charged mesons because the imaginary part 
of the forward scattering amplitude differs in this 
case on the left and right cuts by its sign only. The 
dispersion relations for A0( w ), including the form 

large energies at least as fast as 1/ w. And as 
regards the swn of the pole terms, it will be shown 
in the following section that it contains only one 
term with w~ < w~, if A0(p.) < 0, and one more 
term with w~ < w~ < p.2, if A0(p.) > 0. All this, how­
ever, is irrelevant for what follows. 

The residue of the function A 0 ( w) at the pole, 
proportional to the coupling constant f2, equals 

- (dh/dw2 ) -t, 2 -w2. It is therefore easy to ob­w - 0 

tain the following expression for the coupling con­
stant: of the pole term, are easily written down following, 

for example, the work of Goldberger et al,[3] taking 
into account the fact that A0( w) = [A+( w) +A- ( w )]/2, 
where A± are the forward scattering amplitudes for 
1T± mesons on protons: 

00 

+ _i_ \ Im A 0 ( w') [--,--2 
1 

2 - --,.--!--2 ] dw' 2 • (1) 
n~ w-w w·-~-t 

p.' 

Here w is the energy of the 1T meson in the labo­
ratory system, p. is the mass of the 1r meson, f2 

= 0.08 is the meson-nucleon coupling constant, 
w0 = p.2/2m, and m is the nucleon mass. Accord­
ing to the optical theorem we have 

ImA0 (w) = (k/4:n:) a0 (w), (2) 

where a0( w) is the total 1r0-meson-proton inter­
action cross section. 

It is clear from Eq. (1) that, as a function of the 
complex variable w2, A 0 ( w) is an R-function, i.e., 
the sign of its imaginary part is the same as the 
sign of the imaginary part of w2, and consequently 
it can have zeros only on the real axis.[1] The in­
verse function h0( w) = -1/ A0( w) is also an R­
function and has poles only at the zeros of the 
function A0( w ), i.e., on the real axis. The most 
general dispersion relation that it satisfies is of 
the form 

The constants w~, Rn, b and b1 are real; further­
more b1 :::>:: 0 and Rn :::>:: 0. The latter is necessary 
in order that h0( w) be an R-function in the w2-

plane. The dispersion relation (3) has been written 
without subtractions since Im h 0(w) = Im A0(w)/ 
IA0(w)l 2 goes at large w like 1/w, if the cross 
section a0( w) is approximately constant. Besides, 
two more subtractions in the variable w2 would not 
change the discussion that follows. Actually, some 
of the terms written on the right side of Eq. (3) 
drop out. Thus, the quantities b and b1 are equal 
to zero if the cross section does not decrease at 

As a result of the positive nature of Rn and b 1 
it follows from here that 

00 

1 2w0 \ Im A0 (w') dw' 2 ( ) 

f >----;:( ~ I Au (w') !2 (w' 2 - w?) 2 • 5 
p.' 0 

The idea of the subsequent discussion consists 
of the following. At low energies, when it is pos­
sible to limit oneself in the scattering amplitude 
to s-waves only, one has* 

ImA0 (w') I I A0 (w') 12 = k' == V w' 2 -t-t2 , 

and the range of the variable k', within which this 
assertion is valid, is determined by the inequality 
k' p « 1 ( p is the range of the 1r-meson-nucleon 
interaction). If one accepts the hypothesis men­
tioned in the introduction, that the quantity p is 
determined by the masses of the particles only 
and does not depend on the renormalized coupling 
constant, then the integral on the right side of Eq. 
(5) will certainly contain a small region ( k' p « 1 ) , 
whose size is independent of f2, where the inte­
grand is equal to k' ( w' 2 - w~) - 2• Since the entire 
integral can only be larger than the result of the 
integration over this small region, it follows that 
the quantity r 2 is bounded from below by a certain 
expression which depends only on the masses of the 
particles. 

Below we shall obtain a more precise inequality 
based on replacing the integrand by a quantity in­
dependent of f2 at all energies. We have for 
Im Ao/1 Ao 12 

ImAolw! = k::;O(w) 2 k .\c;~(w, ())dil,'b (6) 
I A" (w) 12 4nc;~ (w, 0) ~ ::;~ (w, 0) 

Here a0( w) is as before the total 1r0-meson-proton 
interaction cross section, and a~( w, e) is the dif-

*Strictly speaking, this equality applies only to pure iso­
topic states, however the refinements conrrected with this re­
mark are trivial and do not lead to any new results. 
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ferential elastic scattering cross section through 
the angle 8. We next carry out a phase shifts ex­
pansion of the right side of Eq. (6):* 

Jm Ao (w) ~I a1 12 (21 + 1) ~I a11 2 (21 + 1) 

I A0 (ro) 12 > k 12; a1 (21 + 1) 12 > k [2; I a1 1(21 + 1) )2 ' (7 ) 

We shall, further, assume that the partial wave 
amplitudes az decrease rapidly for l > Z0(k) 
= kp ( k), where p ( k) is the interaction range 
characteristic of the given energy. If the effective 
dimensions of the system do not increase indefi­
nitely with increasing k, then there exists a cer­
tain maximum p, such that at all energies the az 
are vanishingly small if l > Z0 = kp. It should be 
emphasized that the quantity p need not coincide 
with the quantity p (k) as k- oo. It is easy now 
to observe that the right side of the inequality (7) 
reaches a minimum, when all the az are equal to 
each other. Thus 

~~~ k k I I, 

I Ao (ro) 12 > k ~o (2l + I) = (/o + 1)2 = (kp + 1)2. 

For kp « 1 one obtains the correct value 
Im A/I A 12 = k. Substituting Eq. (8) into Eq. (5) 
and performing the integration we find 

(8) 

1 4ro0 [ 2p 2p (1 - p2) n 1 - 6p2 + p4J 
f > n (1 + p')• + ---u-+ P'la In P + 4 (1 + p')a • 

(9) 

In Eq. (9) we have set 1-' = 1 and have neglected 
the small quantity w0 in comparison with unity. 
The choice of the quantity p is fairly arbitrary. 
Since the 1r-meson-nucleon interaction proceeds 
via the exchange of at least two 1r mesons one 
might expect that p"' %. Then f2 < 60 (w0 = 0.07 ). 
When p = 1, f2 < 100; when p = 0, f2 < 15. Let us 
also note that even if p were to increase with en­
ergy an estimate of f2 would still be possible. One 
would only need to take into account this k-depend­
ence of p when carrying out the integration in Eq. 
(8). Such a dependence, however, is of little impor­
tance since the main contribution to the integral in 
Eq. (5) comes from w' "' 1-'· 

The limitation here obtained on the magnitude 
of the residue has the following meaning: as f2 

goes through a certain critical value the scatter­
ing amplitude ceases to satisfy the unitarity and 
analyticity requirements. That this is so can be 
clearly seen in the example of nonrelativistic 
theory.C2J 

The magnitude of the residue of the pole term 
in the amplitude for the scattering of 1r0 mesons 
on protons, in contrast to the residue in the am­

*The inclusion of nucleon spin leads to no new results, 
naturally. 

plitudes for the scattering of charged mesons, is 
proportional to the small quantity w0• This nu­
merically worsens the estimate of f2 and results 
in a complete disappearance of the inequality in 
the limit when the nucleon mass becomes infinite. 
It is therefore of interest to study the amplitude 
for the scattering of charged mesons on protons. 
We shall show in what follows that in this case 
one obtains a much stronger restriction on f2• 

3. ZEROS OF THE FORWARD SCATTERING 
AMPLITUDE 

In order to obtain restrictions on the residue 
of the amplitude for the scattering of charged 1r 

mesons on nucleons, it is necessary to know the 
number and the location in the complex w-plane 
of the zeros of the amplitude. In this section we 
shall derive" a formula for the number of zeros 
and will discuss their location. 

Let us consider the amplitude A+( w) for the 
scattering of 1r+ mesons on protons and the ampli­
tude A- ( w) for the scattering of 1r- mesons on 
protons, which is connected to A+ by the crossing 
symmetry condition. A+( w) is a function analytic 
in the complex w-plane except for the two cuts 
from w = J.J. to w = + oo and from w = -!-' to w 
=- oo, and the pole at w = w0 = i-'2/2m. On the 
right cut the imaginary part of A+ ( w) is positive 
above the cut [ Im A+( w) = ka+( w )/ 47r] and differs 
by a sign below the cut. On the left cut the situa­
tion is reversed: the imaginary part is positive 
below the cut and equal to ka- ( w )/ 47r and negative 
above the cut. [a±( w) are the total interaction 
cross sections for 1r+ and 1r- mesons with pro­
tons.] 

Consider the integral 

1 ~A+' (w) 
2ni 'f A+ (w) dw (10) 

where the contour consists of lines enclosing both 
cuts on both sides joined at infinity by two large 
semicircles. According to Cauchy's theorem, the 
integral is equal to the number of zeros (k) minus 
the number of poles ( p ) of the function A+ ( w ) con­
tained inside the contour (in our case p = 1 ) . On 
the other hand the integral is equal to the incre­
ment in the phase of the function on traversing the 
contour, divided by 27f: 

k - p = ll<p I 2:n:. (11) 

As will be seen from what follows the increment 
D..cp depends on the signs of the real quantities 
A+(!-') and A+(-J.')=A-(J.'), i.e.,onthesignsof 
the scattering lengths. Let us assume for defi-
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niteness sake that A+(J.J.) < 0 and A-(J.J.) > 0 and 
start calculating D..cp by beginning to traverse the 
contour at w = JJ.. Then the initial value of the 
phase, cp(J.J.), maybetakenequalto 1r [A+(J.J.)<O]. 
The value of the phase at the point w = + oo + iE 
will lie between zero and 1r if the total interaction 
cross section (and, consequently, the imaginary 
part of the amplitude) does not vanish anywhere. 
The total cross section is determined by many 
partial waves and we shall assume that not all 
scattering phase shifts can be simultaneously 
equal to multiples of 1r. This assumption can be 
proved theoretically, since the phase shifts cor­
responding to large orbital angular momenta can 
be calculated from diagrams with lowest in mass 
intermediate states. [ 4] 

Let us now assume that the asymptotic behavior 
of the amplitude A+ ( w) at large w has the charac­
ter wn, where n is an odd integer. n must be odd 
in order that the imaginary part of A+( w) be nega­
tive above the left cut. On traversing the large 
semicircle, joining the points + oo + iE and - oo 

+ iE, the phase increment amounts to n1r. As one 
proceeds along the upper edge of the left cut, the 
phase varies between n1r and ( n + 1) 1r and conse­
quently is equal to ( n + 1) 1r [an even multiple of 
1r since A- ( J.1.) > 0] at the point w = - JJ.. Continu­
ing these considerations it is easy to show that the 
total phase increment upon traversing the contour 
equals D..cp = 2rn. From here, according to Eq. 
(11), we get 

k=n+p (12a) 

It is easy to see that Eq. (12a) remains valid if 
A +(J.J.) > 0, A-(J.J.) < 0, but 

k=n+p-1 

k=n+p+l 

(A+ (f1) < 0, 

(A+(f1) >O, 

A-(f1)<0), (12b) 

A-(f1)>0). (12c) 

If the asymptotic form of the amplitude does not 
have a pure power law character, but rather is mul­
tiplied by a slowly varying function (for example, 
by ~ ln-2 w, which would insure the decreasing of 
the total cross section [s] ), then Eqs. (12) remain 
valid. If instead the behavior of the amplitude at 
infinity is governed not by an integral power of w, 
then it is easy to show that the n in Eqs. (12) is 
equal to the odd integer nearest to the exponent of 
w in the asymptotic form of the amplitude. It 
should be added that in view of the positive nature 
of the imaginary parts on the cuts the scattering 
amplitude cannot, apparently, have an asymptotic 
behavior that depends on the direction in the com­
plex plane along which the point at infinity is ap­
proached. 

If it is accepted that at large energies the total 
cross section is approximately constant (n = 1 ), 
then it follows from Eq. (12) that the forward 
scattering amplitude of 1r + mesons on protons has 
one [A±(J.J.) < 0], two [A±(J.J.) of opposite signs], 
or three [A± ( J.1.) > 0] zeros. Qualitatively the lo­
cation of these zeros can be easily determined by 
investigating the amplitude A+( w) for real values 
of w in the interval ( - JJ., J.1.). For w close to w0 

A+( w) tends to + oo if w lies to the left of w0, 

and to - oo if w > w0• It therefore follows that in 
the case when A+ ( J.1.) < 0 and A- ( J.1. ) < 0 the single 
zero of the amplitude lies on the real axis to the 
left of the point w0• When A +(J.J.) > 0, A-(J.J.) < 0, 
the amplitude has two zeros: one to the left and 
one to the right of the point w0• When A+ ( J.1.) < 0, 
A- ( J.1.) > 0 (the experimentally observed situa­
tion) one has various possibilities. The two zeros 
of the amplitude could both lie to the left of w0, or 
both to the right of w0, or lie in the complex plane 
(in which case they must be, of course, complex 
conjugate). All the cases with three zeros can 
be obtained from these last ones by the addition 
of a zero on the real axis to the right of w0• 

The amplitude for 1r0 mesons scattering on 
protons {A0(w) = [A+(w) +A-(w)]/2, A0(w) 
= A0(- w)} has two poles at the points w0 and 
- w0, and has consequently either two zeros if 
A0(J.J.) < 0 (which corresponds to the experimental 
data), or four zeros if A 0 ( J.1.) > 0. In the first 
case these zeros are either on the real axis be­
tween - w0 and w0, placed symmetrically with 
respect to the origin, or on the imaginary axis. 
In the second case one must add to them a zero 
to the right of w0 and a zero to the left of - w0• 

In the w2-plane this corresponds to what has been 
said in the previous section. 

In an analogous manner it is easy to show that 
in electrodynamics the amplitude for forward 
scattering of photons on electrons has no zeros 
[A ( 0) = - e2 /m < 0 ] , and the amplitude for scat­
tering of 1r mesons on 1r mesons has either no 
zeros, or one, or two zeros. 

4. SCATTERING OF CHARGED 71' MESONS ON 
PROTONS AND 71'71' SCATTERING 

Let us return to the estimate of the residue of 
the pole term in the amplitude for the scattering 
of 1r + mesons on protons, A+ ( w ) . As was shown 
in the preceding section this function may have 
one, two or three zeros distributed in various 
ways. The most interesting, from the point of 
view of obtaining restrictions on the coupling con­
stant, is the case of two complex zeros and, pos-
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sibly, one more zero to the right of w 0• All the 
other variants can be discussed in a manner anal­
ogous to the one described below, and lead to 
stronger inequalities on the coupling constant­
hence may be considered as being included in the 
estimate obtained below. 

Let w1 and w2 = wf be the complex zeros of 
A+(w), and w3 the additional zero (w3 >w0 ). 

Consider the functions 

F (w) =A+(w) (w +P·)/(w-lu1) (w-w2), 

W(w) = -1/r(w), (13) 

which are R-functions (the imaginary parts of 
these functions due to the pole terms and on the 
right cut have the same sign as Im A+( w ), and 
the opposite sign on the left cut). F + ( w) has two 
zeros at w= - J.L and w = w3 and a pole at w = w'0, 

H+( w) has poles at w =- J.L, w3 and a zero at 
w = w0; both functions behave for large w approx­
imately like constants [A+ ( w) "" w ] . The disper­
sion relation for H+(w) has the form 

co 
+ 1 \ , Im A+ (w') 

H (w) = n j du) I A+ (ro') I• ! ro' -w1 12 [--1- ___ 1_] 
ro' + fL ro'- w w'- w0 

I" 

co 
1 \ d , Im A-(w') I w' + w1 12 [ 1 1 J 

---n~ (J) lA (w')l 2 ro'-fL ro'+ro-w'+roo 
I" 

_ 1 ro, + fL 12 [-1-__ 1_] + R3 [-1-__ 1_] 
A (!-1) fL+ w f.I+Wo Wa-ro roa-wo ' 

(14) 

A subtraction has been performed at the point 
w = w0 in Eq. (14) and the fact that H ( w0 ) = 0 has 
been taken into account, so that for w close to w0 

H(w) is of the form H(w) ~ H'(w 0)(w-w0 ). As 
can be seen from the relation between H + ( w ) and 
A+( w ), the magnitude - 2f2 of the residue of the 
function A+( w) is proportional to -1/H' ( w0 ). 

Consequently 
co 1 wo+fL {1 C lmA+ lw'-wtl2 dw' 

2f2 =I Wo- Wtl 2 n ~ I A+ l2 (w'- Wo) 2 (w' + !-1) 
I" 

co 
, 1 \ Im A- I w'+w1 l2 dro' 

1 n ~ I A- 12 (ro' + Wo) 2 (w'- fL) 
I" 

I ro, + fL 12 1 + Ra } 
+ A (f.~) (fL + w0) 2 (wa- roo) 2 • 

(15) 

We can now proceed in the same manner as in 
estimating the residue of the function A0(w), i.e., 
estimate Im A±/1 A± 12 by Eq. (8) and then 
strengthen the inequality by throwing away the 
last terms in Eq. (15). If the small quantity w0 

is neglected everywhere, we arrive at the follow­
ing inequality: 

1 4!, [ 1 1 __i_ 1 , lz ] . 
f > rt -1- )WJ '. (!)~ -~- f1l Wt j2 ' 

co 00 

\" dw' 
11 = j k'ro' (k' p + 1)2 ' 

(' w' dw' 
I z = ~ k' (k'p + 1)•' 

l 1 

J.l = 1. 

(16) 

Let us set 1/ w1 = x + iy; then the polynomial in 
the square brackets [ (12 /I1 )( x2 + y2 ) + 2x + 1] has 
a minimum at y = 0 and x = - Itfi2• For the quan­
tity f2 we obtain the estimate 

1 4!, 4 F > Jti; (l2- /1) = nr cp (r) l 1 - cp (r)l; 

p2 :n: p (1 - p2) 2p2 In p ( ) 
cp (p) = (1 + p•) + '"2 (1 + p2)2 + (1 + p2)2. 17 

For p = 'l'2 f2 < 1.7; for p = 1 f2 < 1r, for p = 0 
f2 < 0.5. These estimates are somewhat better than 
those obtained in Sec. 2. It is interesting that cor­
responding to the maximum value of f2 the position 
of the zero turns out to be on the left cut, i.e., at a 
place where the true scattering amplitude cannot 
vanish. Indeed, 

w, = -!2jf, = -cp(p)<-1. (18) 

This circumstance is related to the fact that we 
have not formulated quantitatively the condition 
that the total cross section must not vanish any­
where. It is obvious that the restriction obtained 
on f2 has been greatly overestimated as compared 
with the true one. From Eq. (18) follow numerical 
values for w1 for various choices of p. For p = 'l'2 

w1 = - 2.8; for p = 1 w1 = - 2; for p = 0 w1 -- oo. 

In what follows we consider the question whether 
the pion-nucleon interaction is the maximal 
possible given the masses of the particles. Had 
we been able to give a good estimate for the crit­
ical constant, beyond which unitarity and analytic­
ity of the theory are violated, then this question 
could be answered by comparing this quantity with 
the observed value f2 = 0.08. The value of the crit­
ical coupling, obtained from Eq. (17) with p = 'l'2, 

f~r = 1. 7 is 20 times larger than the observed 
value. This, of course, means nothing since our 
restriction has been so greatly overestimated. 

One can compare the location of the zeros of 
the amplitude, as obtained from Eq. (18), with the 
location of the true zeros which can be determined 
from experimental data, and see to what extent they 
agree. At that one should remark that since experi­
mentally A +(J.L) < 0, A-(J.L) > 0, it follows that 
A+ ( w ) has two zeros. It is shown in the Appendix 
that it follows from experiment that w1 2 =- 0.9 
± 0.5 i. These numbers are in qualitati;e agree­
ment with the zeros obtained from Eq. (18) by re­
quiring that f2 be maximal, if it is taken into ac­
count that this requirement must be supplemented 
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by the condition that a± ( w) must be larger than a 
certain minimum value, beyond which w1, 2 devel­
ops an imaginary part. It may be that this com­
parison may serve as an indirect indication that 
the meson-nucleon interaction is maximal. 

Restrictions on the residues of the pole terms 
can be easily obtained also in the presence of 
bound states in the theory. In contrast to the non­
relativistic theory [2] the upper bound on the coup­
ling constant may depend here on the energy differ­
ences of the bound states and increase as this dif­
ference decreases. 

Let us show now that also the scattering ampli­
tudes at zero energy, i.e., the scattering lengths, 
are restricted in absolute magnitude, provided that 
they are negative. Qualitatively this can be under­
stood as follows. At low energies (kp « 1, where 
k is the momentum and p is the interaction range ) 
the scattering amplitude is of the form a/ ( 1- ika ), 
where a is the scattering length. For w < fJ., 
k = +i ..j fJ-2- w2 , so that the amplitude is written 
here in the form a/ ( 1 + a ..j fJ-2 - w2 ) • This expres-

• sion has a pole at I k I = ...J fJ-2- w2 = 1/a. If a< 0 
and I a I is very large then this pole falls into the 
region of applicability of our formula ( kp « 1 ) . 
Therefore, if it is known that in the given theory 
there are no bound states with small binding en­
ergies, the quantity I a I cannot be too large. For 
a > 0 the pole passes into the second sheet of the 
complex plane and the restriction disappears. In 
that case we are dealing with a situation analogous 
to singlet np scattering. 

Let us consider 1r-meson-1r-meson scattering, 
restricting ourselves for the sake of simplicity to 
the case when the crossed reaction is the same as 
the direct reaction. If the scattering length is 
negative then, according to the results obtained 
above, the scattering amplitude has no zeros and 
the dispersion relation for the inverse function 
may be written in a form analogous to Eq. (3) * 

00 

1 \ dw' 2 Im A (w') 
h (ro) = n ~ -w-;;;'2'--w"• -I A (w') 12 • 

(19) 
,.. 

The scattering length is a = - 1/h ( fJ. ) • Hence 

1 1 r dw'2 Im A (w') 
-a= n ~ w' 2 -P,2 IA(w')l2 ,.. 

dw' k' 2 
w'2 - p.2 (k'p + 1)2 = rrp' (20) 

!a I < np/2. (21) 

*For positive a, the right side of Eq. (19) would also con­
tain the pole tenn corresponding to the zero of A ( cu ). The 
presence of this negative tenn would make it impossible to 
obtain an estimate. 

If the 1r1r interaction is characterized by a 
range p"' % then I a I < 7r/4. Since this result 
most certainly represents a great overestimate 
it is, apparently, to be expected that if the 1r1r 

scattering lengths are found experimentally to be 
negative, they will turn out to be of the order of 
0.1 fi/ J.LC, and not fi/ f.J.C as is frequently asserted. 

Analogous inequalities may be also obtained 
for the 1rp scattering lengths. For example, for 
the 1r0-meson-proton scattering amplitude one 
obtains 

fa! <np/cp(p), (22) 

where cp ( p) is given by Eq. (17). For p = Y2, 

I a I < 4.3. Experimentally the value of this length 
is "' - 0.02. 

5. CONCLUSIONS 

Despite the hypothetical nature of the assump­
tion that a range independent of the interaction 
strength exists, we are convinced that unitarity 
and analyticity do in fact impose restrictions on 
the possible values of the coupling constant. This 
raises the question whether the 1!"-meson-nucleon 
interaction, as well as other strong interactions 
of various particles, is the maximal possible given 
the values of the masses of the particles. Formu­
lating the question in this fashion presupposes that 
the magnitude of the renormalized coupling constant 
may vary to some extent independently of the 
masses. Such an assumption seems reasonable 
at the present time since in field theory masses 
and coupling constants appear as independent 
quantities as a result of the infinite renormaliza­
tions. As regards a "future" theory, in which 
definite values of coupling constants will be corre­
lated with strictly determined particle masses, we 
remark that in the first place in such a theory the 
coupling constants themselves will have definite 
numerical values, and in the second place no such 
theory exists as yet. 

An example of maximal coupling in the nonrela­
tivistic case is provided by the deuteron formula 
for nucleon-nucleon scattering. In this case the 
connection between the location of the pole and the 
size of the residue of the scattering amplitude cor­
responds to the strongest interaction possible.C2J 

The idea that the strong interactions that are 
present in nature are in a certain sense as strong 
as possible seems rather attractive, although at 
this time it cannot be formulated theoretically in 
a precise manner or verified experimentally. 

In conclusion the authors would like to express 
their gratitude to Ya. B. Zel 'dovich, who stimulated 
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their interest in this question. We are also grateful 
to I. Ya. Pomeranchuk and V. A. Anisovich for con­
structive remarks. 

APPENDIX 

DETERMINATION OF THE ZEROS OF THE AM­
PLITUDE FOR THE FORWARD SCATTERING 
OF 1r MESONS ON PROTONS 

The dispersion relation with one subtraction at 
w = w0 for the function - ( w - w1) ( w- w2 )/ 

(w-w 0 )A+(w) can be written as follows (JJ, = 1) 

a (w)- 2b (w) s + c (w) T] = 0, (A.1) 

where 
S = (w1 +Jw2)/2, T] = W1W2, (A.2) 

00 

+ w-w0 \" 1 1 2 [ImA+(w 1
) 1 

n ~ dffi (J) 1 A+ (w') 12 (w'- w 0) 2•(W1 - w) 
1 

Im A- (w') 1 J 
+ I A (w') I" (w' + w0) 2 (w' + w) _ ' 

b (ffi) = ~~ + (w- w0~ A+ (w) 

00 

w-w0 (' d 1 I[ImA+(w')• 
n J ffiffi jA+(w')j 2 (w'-w0) 2 (w'-w) 

1 

Im A- (w') 1 J 
I A (w') 12 (w' + w0) 2 (w' + w) ' 

1 1 
c(ffi) = 2f2 + (w-w0)A+(w) 

00 

w- W0 \ 1 [ Im A+ (W 1
) 

-r- n ~ dffi I A+ (w') j2 (W 1 - w0) 2 (w'- w) 
1 

Im A-(w1
) 1 J + JA (w')j2 (w'+w0) 2 (w'+w) • 

(A.3) 

It follows from Eq. (A.1) that no matter what 
two values are chosen for w after evaluating the 
expressions (A.3) the combinations 

S = (aiC2 - U2Cl)/2 (b1C2 - b2C1), 

11 = (mb2 - mb1)/(b1C2 - b2c1) (A.4) 

( a 1 and a2 • • • are the values of the functions a ... 
for those choices of w) should lead to the same 
values of ~ and 'rl· The verification of this asser­
tion is by itself equivalent to an additional verifi­
cation of the dispersion relations. It turns out to 
be simplest to evaluate (A.3) at the points w = ± 1 
since, on the one hand, it is then not necessary to 
evaluate the integral in the principal value sense 
and, on the other hand, the following quantities 
are known 

where a 1 and a 3 are the scattering lengths of 
Orear .CsJ In the numerical integration in Eq. (A.3) 
we have set w = ± 1. The values of the real and 
imaginary parts of A±(w) were taken from[7J. 

As a result of integration and evaluation of 
Eq. (A.4) we find ~ = - 0.88, 11 = 0.96. Conse­
quently w1 2 =- 0.88 ± 0.44i. Since the size of 
the imagin~ry part of w1, 2 depends on the differ­
ence of two rather similar numbers (it is equal 
to ~2 ) it is unlikely that our determination 
is very accurate. For this reason we give in the 
text the value w1 2 = - 0.9 ± 0.5 i. 

' 
Note added in proof (July 14, 1961). From a different point 

of view the question of the strength of the coupling has also 
been discussed by Chew and Frautschi.[•J 
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