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We investigate the interaction between electrons and ions in highly compressed matter. The 
possibility of superconductivity is discussed. We find the spectrum and the damping of the 
electron excitations of highly compressed hydrogen. 

WE have studied earlier [i] a number of proper­
ties of highly compressed matter. In particular, 
we showed that the nuclei form a crystalline lattice 
at high density; we foUJ?-d the long-wavelength lat­
tice vibrations spectrm:h. The present paper is 
mainly devoted to a study of the spectrum of elec­
tron excitations in highly compressed matter. 

m 

X exp {i (Em- E0 ) (t- t')}, (1.2b) 

where the summation is over all possible states of 
the system, Em- E0 are the corresponding exci­
tation energies (for a Hamiltonian H - t.tN), and 
1/J ( x) are the Schrodinger operators. 

1. ELECTRON GREEN'S FUNCTION IN A CRYS- Because of the translational symmetry, the rna-
TAL. ROLE OF THE STATIC LATTICE FIELD trix elements of the kind (<I>J'¢ (x) <I>m) must pos-

[2] sess the properties of the Bloch wave functions of 
It is well known (see ) that it is necessary to an electron in a periodic field, i.e., it must be pos-

find the poles of the Fourier transform of the appro- 'bl t 't th · th ~ s1 e o Wrl e em 1n e 1.0rm 
priate Green's function 

G~!l(x- x'; t- t') =- i (T (1i)« (x, t) 'iJt (x', t')), (1.1) 

to obtain the excitation spectrum in an isotropic 
system; in (1.1) 'iPa is the Heisenberg operator 
and ( ... ) indicates averaging over the ground 
state. In the case under consideration the system 
is not isotropic, but possesses translational sym­
metry. Because of this we derive anew Lehmann's 
formula [3] applicable to such a system. We as­
sume that the number of electrons is given, but at 
the same time we shall use a Hamiltonian H- t.tN 
where J.t is the value of the energy on the Fermi 
surface. The electron energy is then calculated 
from the level J.t. 

Introducing as usual [3•2] summation over inter­
mediate states we find for t > t' * 

G (x, x'; t-t') = -i~(<l>~'iJ(x, t) <I>m)(<l>~1j)+ (x', t') <l>o) 
m 

= - i ~ (<D~ljl (x) <Dm) (<D~ljl+ (x) <D0) 

m 

X exp {- i (Em- E0 ) (t- t')} (1.2a) 

and for t < t' 

*We use units in which 1i = 1. We have omitted for the sake 
of simplicity the spin indices. 

where k is the quasi-momentum and Unk and Vnk 
are periodic functions of the coordinates. The in­
dex m, enumerating the excited states, corre­
sponds to the collection of the numbers n and k. 

From (1.2) and (1.3) we get for the Fourier com­
ponent of G with respect to t- t' 

G (e; x, x') 

= ~ ~ eik(x-x') { unk (x) u:k (x') + vnk (x) v~k (x') } 
V k, n B- Gn (k) + il\ 8 + Gn (k)- i6 ' 

(1.4) 

where ~n ( k) = Enk- E0• The values of k in this 
sum are restricted to the basis cell in the recipro­
cal lattice. If we recollect the well-known commu­
tation properties of the Schrodinger operators, we 
see easily that the functions Unk and Vnk satisfy 
the following conditions 

~ ~ eik(x-x') {Unk (x) u:k (x') + Vnk (x) v~k (x')} = 6 (x- x'), 
n, k 

~ ~ e-ik(x+x') {Vnk (x')u~k (x) + Vnk (x) u:k (x')} = 0. (1.5) 
n, k 

408 
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We can expand the functions Unk(X) and Vnk(X), 
which are periodic functions of the coordinates, in 
Fourier series 

Unk (x) = ~ Unk(K) eiKx, Vnk(x) = ~ Vnk(K) eiKx, (1.6) 
K K 

where the summation over K is over all periods of 
the reciprocal lattice. Substituting (1.6) into (1.4) 
and performing the Fourier transformation with 
respect to x and x' we get 

G (8; k + K, k' + K') = G (8; K, K'; k) (2n)3 b (k- k'), 

• '· _~funk (I() u~k (I(') Vnk (K) v:k (K')} 
G(8,K,K,k)-~\'s-~ (kJ+i6 + c.+t; (k)-i6 · 

n n n 

(1. 7) 

The spectrum of the electron excitation is ac­
cording to (1. 7), as also in the case of an isotropic 
Fermi system, determined by the poles of the 
Green's function, and these poles are independent 
of K and K'. It will therefore be convenient for 
us to consider henceforth the diagonal element, 
i.e., G ( E; K, K; k) and introduce instead of the 
quasi-momentum k the momentum p :p = k + K. 
Such a function corresponds completely to the 
usual Green's function in an isotropic medium 
G(E,p). 

The function G ( E, p ) has in the first approxi­
mation the form [2] 

a<o) (8 ) = 1 (1 8) ,p B-~(P)+i6sign~(p)' • 

where ~ (p) = p2/2m- PV2m, 6- +0 (for p 
near to Po the function ~ r::::~ u ( p- Po) where u 
= p0/m ). In the following we consider the change 
in this function under the influence of the interac­
tion of the electrons with one another and with the 
ions in the lattice. We shall as usual write G in 
the form ( E- ~ + f:::..JJ.- ~ ) - 1 and study the irreduc­
ible diagrams which give a contribution to the 
"self-energy part" ~. 

Before doing this, we consider the interaction 
of the electrons with the static lattice field. The 
diagrams for the G-function depicted in Fig. 1 
are responsible for this interaction. We denote 
by a cross the vertex 

-x- -x-X- -x-x-x-
a b c 

FIG. 1. 

2 
FIG. 2 

the electron-electron interaction (the wavy line 
corresponds here to a Coulomb vertex 47Te2 /k2, 

where k is the momentum transfer ) . Indeed, the 
latter gives the self-energy part 

~ __ 4ne2 . \ G ( ) '" d3pde __ 4ne_:__ N e _ 4ne2 Z N • 
(2)- a." t J 8 • P e (2n) 4 - ct2 V - ct2 V 

Both these and other diagrams can thus be dropped. 
At first sight it seems that as soon as we get 

rid of the vertices with K = 0, the corrections to 
G ( p, E) from the interaction with the static lat­
tice field will be at least of second order. How­
ever, in actual fact this is not always correct. We 
consider the simplest diagram of Fig. 1b assuming 
that the changes in momentum at the vertices com­
pensate one another. We then get the following ad­
ditional term in ~ 

l: = (4rrZe2 !!_)2 ~ _1_ 1 
V 0 < IKI K• B- ~ (p- K) +if! sign~ (p- K) · 

(1.10) 
We are interested in the vicinity of the pole of G, 
in other words, in the point E = ~ ( p), and the re­
gion near the Fermi surface, i.e., I~ I « p~/2m, 
where Po is the limiting Fermi momentum, will be 
the most important one. One sees easily that for 
several values of the momentum p one (or sev­
eral ) of the differences ~ ( p) - ~ ( p- K) becomes 
very small and the corresponding term in ~ very 
large.* 

The equations ~ (p) = ~ (p- K) determine sur­
faces in momentum space (the boundaries of the 
Brillouin zones). It is clear that near such bound­
aries Eq. (1.10) is no longer suitable. It is well 
known that intersections of the Fermi surface and 

Q (8, p; 8, p + K) = -4nZe2 (N/V) K-2, (1. 9) the Brillouin zone boundaries make this surface 

where K is a reciprocal lattice vector. We first 
get rid of the vertices with K = 0. We replace the 
Coulomb interaction law by e-ar /r. The contri­
bution to G ( E, p) which is introduced by the lat­
tice vertices with K = 0 can be expressed by 
means of the self-energy part ~<1> = -47TZe2N/a2v. 
One sees easily that this part is exactly compen­
sated by the diagram of Fig. 2, which arises from 

more complicated, and in particular lead to the 
formation of open surfaces. If we assume that 
highly compressed matter has a body centered 
lattice (see [1]), the smallest distance to the 
boundary is equal to -f21r/a, where a is the cube 
edge, or -f2rr (2V/N )-113 = 3.52 (N/V) 113. If we 

*This fact is well known from the theory of an electron in 
a weak periodic field (see[•]). 
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compare this with the Fermi momentum Po 
= (37r2ZN/V)113 = 3.09 (ZN/V) 113, it is clear that 
for hydrogen the whole of the Fermi surface can 
be contained within the basis cell of the reciprocal 
lattice. The position is, however, already different 
for helium (p0 = 3.89 (N/V) 113 ). This conclusion 
remains valid also in the case where highly com­
pressed matter has a face-centered cubic lattice. 

One can show that in the case where the inter­
section takes place, in the regions near the inter­
sections [at distances on the order of p0e2/u 
(where u = p0/m )] the radius vector of the Fermi 
surface changes by an amount of the same order, 
and the velocity on the Fermi surface changes even 
by an amount of the order of p0/m. 

In the following we shall restrict ourselves for 
the sake of simplicity to a study of the electron 
spectrum of compressed hydrogen. Since there are 
no dangerous intersections the correction to 1: 

from the static lattice field will be a quantity of 
second order. We shall neglect such quantities in 
the following. 

2. INTERACTION BETWEEN THE ELECTRONS 

For what follows it is necessary to study the 
interaction between the electrons. The main char­
acteristic of this interaction is the so-called vertex 
part. r, in which all Feynman diagrams with four 
electron ends occur. Apart from the free Green's 
functions (1.8), the elements of such diagrams are 
the elementary vertices, due both to direct inter­
action of the electrons with one another and to 
their interaction with phonons. 

The vertex corresponding to the electron Cou­
lomb interaction is equal to r 01 = 47re2 /k2 and will 
be depicted by a wavy line in the diagrams (Fig. 3a). 

M>----< 
a b 

FIG. 3 

The electron-phonon vertex depends on the choice 
of the phonon field operators. If we take as the 
phonon operators ( NM/V )112 u (x, t ), where u is 
the ion displacement and M the ion mass, we can 
easily obtain an expression for the elementary 
electron-phonon vertex by expanding the electron­
ion interaction operator; it turns out to be equal 
to 
y,(e, p; e+ (J), P+ k + Kj (J), k) 

= 4rre2iVN IV M (k + K), I (k + K)2, (2.1) 

where k lies within the confines of the basis cell 
of the reciprocal lattice.* In this expression the 
fact is manifest that the electrons possess not 
momentum, but quasi-momentum, which is con­
served only accurate to an arbitrary reciprocal 
lattice period K. 

The simplest diagram for r due to the electron­
phonon interaction is illustrated in Fig. 3b and is 
equal to 

ro2 (8p, p; 8q + (J), q + k + K; Bp + (J), p + k + K'; Bq, q) 

= 4rre~(J)~Da~ ( (J), k) (k + K), (k + K')~ I (k + K)2 (k + K')2 , 

(2.2) 

where w0 = v'47re2N/MV and Da{3(w, k) is the 
Fourier component of the phonon Green's function 
(it corresponds to the dotted line) given by the 
equation 

D,~ (Ri- R~t. t - t') 

= -i (N M/V) <T (u, (R1, t) u~ (R~t. t')) > 
00 

= ~ ~ ~ ~~ D,~ (~! (J)) exp {i [k (Ri- Rn)- (J) (t- t')J}. 
k -

00 (2.3) 

Here ( ... ) indicates an average over the ground 
state; Ri are the ion coordinates; the summation 
over k in the last formula is confined to the basis 
cell of the reciprocal lattice. 

From the definition of the D-function we can 
easily obtain the relation 

~ v, (k, s) v; (k, s) 
D,~(k, (J))=..:::.J m2 -m2 (k,s)+i6' 

s 

(2.4) 

where w (k, s) and v (k, s) are the natural fre­
quency and polarization vector of the s-th branch 
of the phonon spectrum, while 

~ v, (k, s) v: (k, s) = 1. 
<X 

In the case when the momentum transferred is 
not very small, we can restrict ourselves in first 
approximation to the simplest diagrams of Fig. 3a 
and b: 

fo (ep, p; Bq +w, q 

+k +K; Bp +w, p +k +K'; Bq,q) 

= ( 4rre2 I (k + K)2) [ 6KK' + (J)~D,~ (k) 

X (K + k), (K' + k)~ I (k + K')2 ]. (2.5) 

However, since the Coulomb forces have a long 
range, such a vertex part has a singularity for 
small momentum transfers. This singularity 
occurs according to Eq. (2.5) only in those r for 
which at least one of the K vanishes. The most 

*We recall that the whole of this consideration is only ap­
plicable to hydrogen, so that we assume everywhere that Z = 1. 
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c 

FIG. 4 

important case is the one when K = K' = 0 for 
when K ~ 0 and K' = 0 the vertex is smaller by 
at least a factor kiKmin ~ klp0• We consider 
therefore only the case K = K' = 0, k « p0• To 
describe this vertex correctly we must take terms 
of higher order into account. 

One sees easily that the main role will be 
played by the corrections to r 0 corresponding to 
the diagrams of Fig. 4. In each such diagram the 
increase in the power of e2 is compensated by a 
corresponding power of the large quantity 1lk2• 

The basic element of such diagrams is the loop 
formed by electron lines. Such a loop corre­
sponds to the expression* 

n (w, k) = 2i~~(:~3 G0 (p, e) G0 (p + k, e + w) 

= Pom [l-~ln(ro+uk+i6signro)] 
:rt2 2uk ro - uk + ib sign ro ' (2. 6) 

where o- +0. 
Summing all diagrams which do not contain pho­

non lines (Fig. 4a) we get 

(2. 7) 

In the case w « uk this formula gives 47re2 I ( k2 + K2 ), 

where K is the reciprocal of the Debye radius and 
is equal to 

'X = Y 4pome2/n. (2.8) 

The summation of the loops is simply equivalent to 
taking the Debye screening into account. 

We now turn to the diagrams containing a phonon 
line. It was shown in [l] that the lattice vibration 
spectrum in the region of the small momenta consists 
of three acoustical branches, one of which corre­
sponds to longitudinal vibrations while the other 
two correspond to the transverse vibrations (apart 
from small terms of the order of e21u). Since the 
electrons interact only with the longitudinal pho­
nons [one sees this easily from Eqs. (2.2) and 
(2 .4); see also the last footnote ] the expression 
kakf3k-2 Daf3( w, k) will in the case w « uk simply 
correspond to 

*If the loop 11 arises after a phonon line, it may depend on 
k + K. However, in that case, according to Eq. (2.1), there 
occurs in the corresponding electron-phonon vertex a factor 
Ka./K2 instead of k"/k2 , and this leads to a decrease of the 
diagram by the factor k/K '"'"'k/p0 • 

l/(w2 - w~ (k) + ib), (2.9) 

where wz is the frequency of the longitudinal pho­
nons, which was found in[i] 

w1 = wo [k2/(k2 + x2)]'/,_ (2.10) 

We obtained Eq. (2.10) with account of the Debye 
screening. All electron loops strung along the D­
line are thus already taken into account in Eqs. 
(2.9) and (2.10) when w « uk. If w ~ uk, Eq. (2.9) 
is no longer valid. However, as in (2.7), the whole 
of the difference consists in that one must substi­
tute the more general expression 47re2II for K2• 

If we perform this substitution formally in Eq. 
(2.10) for wz and substitute this into (2.9) we ob­
tain the complete D-function also for the case w 
~ uk. 

There remains now for us to sum all diagrams 
of Figs. 4b, c, d. One sees easily that these dia­
grams differ from the diagram of Fig. 3b by the 
replacement of both electron-phonon vertices by 
more general expressions which take screening 
into account. The summation of the necessary 
diagrams causes each electron-phonon vertex to 
be simply multiplied by k21(k2 + 47re2II ). The total 
expression for r has thus for small transfers k 
and w the form 

r (k w) = 4:rte2 [I w~ J 
• k2 + 4ne2n + w2 _ w~ + i/'J • 

Substituting Eq. (2.10) for wz and taking the 
substitution K2 - 47re2II into account we find finally 

4:rte2w2 
f(k,w)=------~~-------­

(w2- w~) k2 + 4:rte2nw2 + i6 · 
(2.11) 

Let us consider the limiting cases. When w 
« uk this expression becomes 

r (w ~ uk = 4:rte2w2 
~) w2 (k2 +x2)-w~k2 +ib (2.12) 

When k - 0 (in the following c z = w 0 I K ) 

when uk';;> w';;> c1k, 

(2.13) 

The last formula is not completely exact. If we 
take into account corrections from "transverse" 
terms in the D-function it is clear that it is valid 
only if w » ctk ( ct is the velocity of the trans-
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verse phonons which is of the order of ../ e2/u cr ). 
When W«Ctk wehave r~47re2 K-2 (ct/ct) 2 . 
Equation (2.12) at w =wz(k) has a pole corre­
sponding to longitudinal phonons (in actual fact 
there are also poles from the transverse phonons, 
but they occur with small coefficients of the order 
of e2/u). 

When w » uk we have II-- Nk2/Vmw2 and 
neglecting the term w~2 as compared to 47re2IIw2 
(~ w~k2M/m) in the denominator of (2.11) we get 

4ne2w2 

f,.,=:=r(ro~uk)= k2 (w2 -4ne2NfmV+i6) · (2.14) 

The pole in r w at wp = ../ 47re2N/m V corresponds 
to plasma oscillations. The dispersion of these 
oscillations arises from the next term in the ex­
pansion in Eq. (2.6) 

I1 = -Nk2/Vmw 2 - p~4/5n2m3w4 • 

Taking this last term into account we get for the 
pole 

w~ = w~ (0) + fu2k2 • (2.15) 

From (2.14) we find the following limiting formula 

r ~ -mVw2/Nk2 , (2.16) 

3. SUPERCONDUCTIVITY 

We consider now whether superconductivity is 
possible in highly compressed matter. To solve 
this problem we apply the simple and clear method 
of Cooper,C5J by means of which the possibility of 
the formation of bound electron pairs was first 
demonstrated. According to Cooper the equation 
for the wave function of a bound electron pair can 
be written in the momentum representation in the 
form 

(2~ (p)- E)ap + ~ ~ Upp'ap' = 0. (3.1) 
IP'I> Po 

We substitute for the effective interaction Upp' the 
electron-electron vertex part r (PtP2; P3P4) in which 
Pt = - P2 = p, Pa = - P4 = P' • Et = €2 = ~ (p ), Ea = €4 
= ~ (p'), i.e., k = p-p', w = ~ (p)- ~ (p'). 

In the integral term in Eq. (3.1) the domain of 
integration over d3p is divided into two. In the 
first region I p - p' I « Po and in the second region 
I p - p' I ~ Po· Since the region I p - p' I ~ K makes 
a relatively small contribution, we can assume in 
the first region that I p- p' I » K and use Eq. (2.5) 
with K = K' = 0, which in the present case gives 

U ' - 4ne• [£ (p)- £ (p')J2 
pp - (p- p')2 [£ (p)- £ (p')J2- (J)~ , 

P-P'\~Po· 
(3.2) 

This potential can approximately be written in the 
form ( K « I P - p' I « Po ) 

U _ { 4ne2 / (p- p')2 for I £ (p)- £ (p') I> Wo (3.3) 
pp' - 0 for I£ (p)- £ (p') I< Wo• 

When we substitute this potential into the second 
term of Eq. (3.1) we must bear in mind that the 
coefficients ap' need not depend on the direction 
of p'. We can thus integrate over the angle be­
tween p and p'. Taking it into account that we 
shall in the following be interested in the values 
I P I >::; I p' I >::; Po we obtain in that case 

4ne2 ( Po ) 1 ~ 
- 2 In ""X+ c1 V LJaP'• 

Po p' 

I~ (p) - ~ (p') I> wo, ~ (p) > o, (3.4) 

where c 1 is a constant of the order of unity. 
We now consider the integral over the second 

region I P- P' I ~ Po· 
It is now necessary to take into account the 

contribution of all phonon branches to the D-func­
tion (and also the vertices with K, K' ~ 0 ). Ac­
cording to Eqs. (2.5), the phonon term in r has 
then in the region I~ (p) - ~ (p') I ~ w0 the same 
order of magnitude as the electron term, while in 
the region I~ (p) - ~ (p') I » w0 it is appreciably 
less than the electron term (see [t]). Bearing in 
mind that the interaction potential depends in the 
region I p - p' I ~ Po weakly on the angle between 
p and p' we can approximately write it in the 
form 

{ 
4ne2c2 I p~, 

Upp' = 
4ne2c3 / p~, 

I S (p)- £ (p') I::(; Wo 

I £ (p)- £ (p') I~ Wo 

(3.5) 

Here, c2 and c3 are constants of the order of unity, 
and c3 > 0. As to the constant c2, its sign depends 
on the relation between the two terms in (2.5) in 
the region k ~ p0, which can be found only by 
evaluating the phonon spectrum in the short­
wavelength region. 

When we substitute the potential (3.5) into the 
integral term of Eq. (3.1) we get two terms. The 
term which contains a summation over the region 
I~ (p) - ~ (p') I > w0 is similar to expression 
(3.4) and contributes to the constant c 1 which 
combines with ln (Po I K ) • 

After all transformations Eq. (3.1) becomes of 
the form 

1 
(n (p) - E) ap +A V ~ 

1 
X ap·+ Bv 

where 

ll;(p)-i;(p')i<oo0 

l;(p')>O 

II; (p)-1; (P'lt>oo, 
l;(p')>O 

ap' = 0, (3.6) 
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In the various regions of g (p) we have 

(26 (p) -E) ap = -A~- B~. 

(26 (p) -E) ap = -B (~ + ~). 
where 

6 (p) < wo, 

6 (p) > wo, (3. 7) 

We find from these equations ap and after that 
a and {3. As a result we get the following equations 
for a and {3 

where 2~ = - E is the pair binding energy. 
Assuming that (pV1r2u) B ln (p0u/w0 ) « 1 we 

find the following equation to determine ~ 

As we have already noted earlier the sign of the 
constant A can be either positive or negative. The 
question, whether or not this equation has a solu­
tion, i.e., whether or not there are bound pairs, 
thus remains an open one. We are thus led to 
the conclusion that the possibility of the appear­
ance of superconductivity is determined by the 
properties of the short-wavelength phonons, and 
the problem posed here can therefore not be solved 
without completely determining the phonon spec­
trum. We can only state on the basis of Eq. (3.8) 
that if superconductivity occurs the order of mag­
nitude of the quantity ~ is given by the relation 

!::.. ~ w0 exp (- Jtuj e2). 

This means that superconductivity is an exponen­
tially small effect and that the magnitude of the 
gap decreases under compression (u = p0/m 
= m-i(37r2N/V)i/3). 

4. ELECTRONSPECTRUM 

We now consider how the interaction of the 
electrons with one another and with the phonons 
influences the electron excitation spectrum. We 
shall evaluate all quantities in the first non-van­
ishing order in e2. We shall then neglect super­
conducting effects, i.e., we shall assume the dis­
tance from the Fermi boundary to be large com­
pared to ~. We have illustrated in Fig. 5 the 
first-order diagrams for the self-energy part, 
where the electron line corresponds to the com­
plete G-function (it was shown in Sec. 1 that one 
need not take into account the diagram of Fig. 2 ). 

a b 

FIG. 5 

The expression for ~ can thus be written in the 
form* 

(4.1) 

where r corresponds to expression (2.5). When 
small values of the momentum Pi - p are important 
in the integral one must take into account diagrams 
of the next order. One sees easily that it is suffi­
cient in that case to take into account the diagrams 
of Fig. 6, i.e., take for r in Eq. (4.1) expression 
(1.9). Since we are interested in the excitation 
spectrum we shall in the following only be inter­
ested in the vicinity of the pole of G, i.e., we shall 
put E::::: g (p). 

c d 
FIG. 6 

We first split off from r the simple Coulomb 
term ri = 47re2/(p1 -p)2. We denote the corre­
sponding part of ~ by ~ 1• One sees easily that 
the values E 1 = g ( p1 ) "" p0u are important in the 
integral in (4.1). We can thus neglect the term 
~ (Pi• E1) in the denominator of the integrand. In­
tegrating, t we get 

2 2 
_ !:__ (- P -Po In P +Po ) 
- n Po + 2p I p- Po I . (4.2) 

The first term within the bracket corresponds to 
the value ~ 1 at p =Po and must be included in fl.· 

The second term in (4.2) has for I p -Po I « Po 
the form 

*Non-diagonal components G(E:; k; K, K') may occur un­
der the integral sign in (4.1) together with the corresponding 
term in r, but we can neglect them since these components 
themselves are at .least of first order in e•;u. 

tThe first-order diagram given in Fig. Sa with G = G0 is 
important here. The integral ( 4.1) contains for such a dia­
gram a factor ei"• .,. where 't ... + 0. Thanks to this, the con­
tour of the integral over £1 is closed in the upper half-plane. 
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(4.3) 

We shall see below that ~ (p, E) - .6.JJ. « ~. We 
can therefore in the integrand in (4.1) replace the 
Green's function by the free one. We get thus 

~ (p, e) - ~1 (p, e) = i ~ (f~~ ~~ [f (PI-p, e1 - e) 

1 
-fdp1 -p, e1 -e)J e1 -£(p1)+i6sign£(pl) · (4.4) 

We perform several transformations in this integral 
(see the paper by Migdal[6J). Instead of Ei and 

A 
cos ( PPi ) we introduce new integration variables 
Ei- E = w and I Pi-p I = k. The integral is then 
transformed to 

oo P+k 

~ - ~1 = (Z~)• P- ~ kdk ~ p1dp1 

0 IP-kl 

-00 

We now write r - r i as the sum of three terms 

where 

4ne• 4ne2 II 
f 2 =- 7i.2 k2 + 4ne2 II' 

4ne2w2k2 r3 = o 
[(w2 - w~) k2 + 4ne2 IIw2 +ill] [k2 + 4ne2 II] ' 

Correspondingly, we also break up ~ - ~ i into 
three parts: ~ -~i = ~2 + ~3 + ~4· 

(4.6) 

(4. 7) 

We shall see that values of k « Po are impor­
tant in the integrals for ~ 2 and ~ 3 • We can thus 
simplify the integral in (4.5). We shall assume 
that I p -Po I « Po and introduce a new variable 
~ = u (Pi -Po). The integrals for ~ 2 and ~ 3 then 
become of the form 

oo ~+uk oo 

~n=(2~)•u ~kdk ~ ds1 ~ drofn(ro, k)e+w-Gl1+i6signGl. 
0 ~-uk -oo 

It is important here that r 2 and r 3 decrease at 
large w as 1/w2• We can thus integrate over ~i 
before integrating over w. Integrating we get 

00 00 

i \ \ I ~ - e - w - uk I ~n=(zn)SU~kdk ~ dwfn(ro,k)ln ~-e-w+uk 
0 -00 

oo ~-•+uk 

+(Z:)"u~kdk ~ dwfn(w,k)sign(e+w). 
o ~-•-uk 

We are interested in the pole of the G-function, 
i.e., the case E R~ ~. The first term of the fore-

going equation then tends to zero. This follows 
from the fact that r 2 and r 3 are even functions 
w [see (4.7) and Eq. (2.6) for II], while 
ln I (w + uk)/(w-uk) I is an odd function. There 
remains thus from the integration over ~ i only 
the residue around the pole. Taking into account 
the fact that r 2 and r 3 are even, we find 

1•1/u uk oo ·1•1 

~n = (;~~~~ [ ~ kdk ~ dro + ~ kdk ~ dw J r n 
o o 1•1/u 0 

1•1 00 

si\!ne \ \ 
= (2n)•u ~dw J kdk rn (w, k). (4.8) 

0 <»/U 

We consider ~ 2 first. Since the general case is 
difficult we study two limiting cases: IE I « UK and 
I E I » UK, where K is the reciprocal of the Debye 
radius. In the case E « UK we can in Eq. (4.8) for 
~ 2 substitute II for w « k. This follows from the 
fact that when k ~ K the frequency w « uk, while 
for k « K the quantity r 2 does no longer depend 
on II ( 47re2II ,..... K2 ). When w « uk we have, up to 
terms of the order w/uk, 47re2II Rl K2• If we sub­
stitute this value into the integral we find 

= - :~ e (In I:~ + 1). (4.9) 

To find the imaginary part of ~ 2 we must take 
into account the next term of the expansion of II 
in terms of w/uk. According to (2.6) 47re2II 
R~ K2 (1 + i1r I w l/2uk). Substituting this into the 
equation for r 2 we obtain 

1•1 00 

~ sign e \ (' 4ne2x2nw ne2 e I e I 
Im "" 2 = - (2n)• u ~ dro ~ dk 2u(k2+x2) = - 16u2 x 

0 <»/U (4.1 O) 

We see easily that in the opposite limiting case 
I E I » KU the region k ,..... K, w ,..... UK is important in 
the integral (4.8) for ~ 2• Because of this we must 
consider the upper limit of the integral over w to 
be infinite. After that we change the order of in­
tegration over w and k. If we introduce new vari­
abies z = w/uk and y = k/K one can easily inte­
grate over y and we get 

(4.11) 

where {3i and {32 are dimensionless constants 
which are respectively equal to the real and the 
imaginary part of the integral 

1 

\ ( in )'/ ~1 + i~2 = .) dz 1 - z th z + 2 z ' (4.12)* 
0 

*th =tanh. 
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(we take here the value of the radical with the 
positive imaginary part). 

We now turn to ~ 3• We can also here distin­
guish two limiting cases: IE I « w0 and IE I » w0• 

According to (4.8) we can in the first case substi­
tute 

The real part of ~ 3 is obtained if we take the prin­
cipal value of the integral over k, which corre­
sponds to the region p0 ~ k ~ K. Bearing in mind 
that w < I E I « w0 « uK we can replace 47re2II by 
K2• Apart from logarithmic terms, we then find* 

(4.13) 

The imaginary part of ~ 3 occurs because of the 
residue of the pole arising from the first bracket 
in the denominator of r 3 and also because of the 
imaginary correction to II in the second bracket 
in the denominator of r 3• The pole corresponds 
to the point k2 = K 2 w2 I w~ (we note that in that 
point k ~ w/c 1 » w/u). The residue from this 
pole gives 

(4.14) 

One sees easily that the second term of Im ~ 3 

exactly compensates the contribution from Im ~ 2 

in this region: 

(Im ~3)2 = ne2e I e I I 16u2x. (4.15) 

In the second limiting case IE I » w0 we must 
use the complete expression (4. 7) for r 3• Since 
the integration over w and k is mainly over the 
region w ~ w0, k ~ K we may perform the substi­
tution 47re2II ~ K2 when evaluating the real part of 
~ 3• Moreover, we can in first approximation put 
the limit of the integration over w equal to infin­
ity. If after this we interchange the order of inte­
gration over w and k, we get 

oo uk oo oo 

~ kdk ~ dw= ~ kdk ~ dw, 
0 0 0 0 

since k ~ K. One sees easily that the principal 
co 

value of J dw vanishes. This leads to the follow-
o 

ing interesting result. If we combine the real 
parts of the different terms of ~ of the form 
(4.4), (4.9), and (4.13) with E ~ ~. it turns out that 
in the case E « w0 all logarithmic terms cancel 
one another. t On the other hand, when E » w0 

*Knowledge of the short-wavelength part of the phonon 
spectrum is required to attain high accuracy. This applies to 
Eqs. (4.16) and (4.17). 

tWe shall show later that k 4 does not contain such terms. 

we have Re ~ 3 ~ 0 and there thus remains in 
Re ~ the term (e2/1ru) E ln (p0 /K ). One can ob­
serve the appearance of a logarithmic term if one 
calculates Re ~ 3, including logarithmic terms, for 
the case IE I ~ w0• We get then 

1•1 
sign ee2 ~ d =-- (J) nu 

0 

= - ~ w0 ln I 8 + Wo lln .E.9_ • 
2un e- w0 x 

Combining all logarithmic terms in ~ we find 

~(e -~ ln/e+ OJo/) ln ~. 
nu 2 e- w0 x 

(4.16) 

We now turn to the imaginary part of ~ 3 for 
I E I » w0• It arises from the residue in r 3 which 
only occurs when the condition w < w0 is satisfied. 
We find thus 

"'' 2n2e2 • ~ w2 
Im ~ 3 = - (-2 )" sign e - 2-- dw. 

n u w - w• 
0 0 

This integral does in actual fact not diverge, since 
the pole ink can notlie above p0, i.e., K2w2/(w5-w2 ) 

« P5 . Restricting ourselves to the order of the log­
arithmic terms we get 

lm ~a = -(e2m0/2u) sign e In (p0/x). (4.17) 

As far as additional terms in Im ~ 3 due to the 
imaginary part of II are concerned, one sees 
easily that they are of relative order w0/uK « 1 
in comparison with (4.17). 

There now only remains the last term, ~ 4 • We 
have chosen the function ~ 4 especially in such a 
way that it vanishes when k « p0• Only values 
k ~ Po will therefore be important in the integral. 
We can write in this region r 4 in the form [see 
(2. 5) l 

r (k w) = 4ne• w2 (_!_ "V 1 v (s, kl k 12 . _ 1 \ 
4 ' k2 0 k2 .LJ w2 - w2 (s, k) + ib w•- w2 + ib )' 

s 0 

(4.18) 

The momentum k can then take on any value, and 
we must substitute in v (k) and w (k) the value of 
this vector, which is reduced to the basis cell of 
the reciprocal lattice by the subtraction of the ap­
propriate vector K. The integral for ~ 4 can be 
written in a form similar to (4.6), but we must 
take into account that expression (4.18) is aniso­
tropic and that we must therefore still integrate 
over dcp in (4.5). Since for an exact calculation 
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we need to know w (s, k) and v (s, k) in the short­
wavelength region k ~ p0, we can only estimate its 
order of magnitude. 

In the region k ~ Po the integral over p1 in 
(4.5) is taken between the limits 0 and ~ 2p0• The 
situation here corresponds exactly to the case 
considered by Migdal.[s] One sees easily that the 
principal value of the integral over ~ 1 gives a 
correction to J1. (~ w0e2/u), and the part obtained 
from the residue of the pole can be written in the 
form 

--2Po E 

(~:)•u ~ d<p ~ kdk ~ dwf• (w, k). 
0 -· 

In the case I € I « w0 the imaginary part of that 

integral vanishes and the real part is of the order 
e2€/u. When € » w0 there are both a real and an 
imaginary part. Both are of the order e2w0 /u. 

We have thus determined all terms which make 
up the self-energy part ~. The pole of the G­
function is obtained from the solution of the equa­
tion E- ~ + l:!.JJ. - ~ = 0, i.e., € = ~ + ~ ( € = ~) 
- l:!.JJ.. It is well known [2] that the real and the 
imaginary parts of the pole of the G-function de­
termine the energy of the excitations and their 
damping: 

e (p) = £ (p) + Re ~ - L1tt, r=-Im~. 

Combining all results obtained in the foregoing we 
get 

· ~ (p) (1 + e2cr1 I nu), 

8 ) _ ~~ (p) [1 + (e2 I nu) (In (2p0 1x)-1)], 
(p - ~ (p) [1 + (e2 I nu) In (2PoU I~ (p))], 

~ (p) [1 + (e2m I np) In ((p +Pol I I P- Po!)]; 

~~roo 
Wo~~~xu 
xu~l;~upo 

£- UPo 

(4.19) 

e2 { ~3 I 6w2o, 
r = u . 1/ts n£ I£ I I ux + Wo sign£ [112 In (Po I x) + ::x2], 

1/2 i32ux sign £, 

£~roo 
Wo~£~ux. 
£)?xu 

(4.20) 

The constants a 1 and a 2 depend here on the pa­
rameters of the short-wavelength part of the pho­
non spectrum, while the constant {3 is expressed 
in terms of the integral (4.12). The change in the 
"velocity on the Fermi surface" which is given 
by Eq. (4.19) corresponds in the region w0 « ~ 

« UK to the equation of Gell-Mann[T] for the elec­
tronic specific heat. 

In conclusion the author uses this opportunity 
to express his gratitude to Academician L. D. Lan­
dau for numerous discussions of this paper. 
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