ABSORPTION OF HIGH-ENERGY PHOTONS IN THE UNIVERSE

A. I. NIKISHOV

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor March 8, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 549-550 (August, 1961)

The probability per unit length of path that a 10^{12} -ev γ quantum is converted into an electron pair as a result of a collision with a thermal photon is calculated. If the energy density of thermal photons in intergalactic space is taken as 0.1 ev cm⁻³, the probability turns out to be 7×10^{-27} . Thus if the distance traversed is greater than 10^{26} cm, the attenuation of the γ -quantum flux may be appreciable.

¹HERE has recently been increasing interest in the possibility of observing point sources of high energy photons.^[1] In this article, we shall consider the role of the reaction $\gamma + \gamma \rightarrow e^+ + e^-$ in the propagation of $10^{-12} - 10^{13}$ -ev photons from sufficiently distant objects outside our galaxy.

The cross section for the conversion of two γ quanta into an electron pair is given by the expression* (see ^[2])

$$\sigma (s) = \frac{1}{2} \pi r_0^2 (1 - v^2) \left\{ (3 - v^4) \ln \frac{1 + v}{1 - v} + 2v (v^2 - 2) \right\},$$

$$v = \sqrt{1 - 1/s},$$

$$r_0 = 2.8 \cdot 10^{-13} \text{ cm}, s = (E \varepsilon/2m^2) (1 - \cos \vartheta),$$

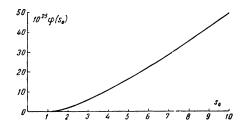
where s is the square of the c.m.s. γ -quantum energy, m is the mass of the electron, c = 1, E and ϵ are the energies of the colliding γ quanta in the laboratory system, θ is the angle between their momenta; $\sigma(s) \approx 10^{-25} \text{ cm}^2$ in the region of s of interest to us. At present, it is assumed that the density of photons with mean energy ~1 ev in intergalactic space is $\frac{1}{3}$ to $\frac{1}{10}$ the density in our galaxy. The density of light energy in the galaxy is $W_{gal} = 0.3 - 1 \text{ ev.}^{[3]}$ It is thus readily seen that if the path traversed by high energy photons is $R \gtrsim 10^{26}$ cm, then the photon flux can be appreciably attenuated. Similar estimates indicate that the contribution to the attenuation of the photon beam as a result of interactions with nuclei or magnetic fields is much smaller.

We proceed to quantitative estimates. The probability per unit length of path that a quantum of energy E is converted into an electron pair in a collision with a thermal photon is

$$P=2\int_{0}^{\infty}d\varepsilon n\ (\varepsilon)\ \int_{0}^{1}z\sigma\ (s)\ dz,\ z=\frac{1}{2}\left(1-\cos\vartheta\right),$$

n (ϵ) is the density of thermal photons in the energy interval d ϵ . Replacing the integration over z by integration over s = $E\epsilon z/m^2$, we find that

$$P = 2\left(\frac{m^2}{E}\right)^2 \int_{0}^{\infty} n(\varepsilon) \varepsilon^{-2} \varphi(s_0) d\varepsilon, \quad \varphi(s_0) = \int_{1}^{s_0} s\sigma(s) ds,$$
$$s_0 = \frac{E\varepsilon}{m^2}.$$


The values of $\varphi(s_0)$ in the interval $1 \le s_0 \le 10$ are shown in the figure. For larger s_0

$$\varphi(s_0) = 25 \cdot 10^{-26} \{ s_0 (\ln 4s_0 - 2) + 3 \}.$$

For the numerical estimate, we set

$$n(\varepsilon) = A \varepsilon^2 / (e^{2\varepsilon} - 1).$$

This is a spectrum of the solar type, where kT = 0.5 and the photon energy is measured in electron-volts. To consider a specific case, we shall assume that the energy density of thermal photons in the universe is 0.1 ev cm⁻³. Then the normalization factor is A = 0.22. Shown in the table are the numerical values of P for different γ -quantum energies and, as an example, the values of PR for an interesting star, Cygnus A (at a distance^[4] R_C = 6.6 × 10²⁶ cm). It is seen from the table that

^{*}It is readily seen that $\sigma(s)$ is obtained by multiplication of the inverse reaction by $2v^2$; the factor 2 results from the fact that the particles in the final state are not identical and v^2 results from the difference in the flux and statistical weight of these channels of the reaction.

10^{-12} E, ev	0.1	0.5	1	5	10	50
10 ²⁷ P, cm ⁻¹	0.05	5	7	4	2	0.7
PRc	0.03	3	4.6	2.6	1.3	0.5

the maximum attenuation of the beam is e^{-PR} for $E = 10^{12}$ ev.

In principle, the effect can be used for an experimental estimate of the mean density of thermal photons in intergalactic space. The numerical value of this density is of interest for a number of astrophysical problems (see, e.g., [5], where the photodisintegration of high energy heavy nuclei in intergalactic space is discussed).

In conclusion, the author expresses his gratitude to V. L. Ginzburg for interesting discussions.

¹G. Cocconi, Proceedings of the Moscow Cosmic Ray Conference, 1960, vol. 2, p. 309; Sekido, Yoshida, Komiya, Heno, and Murayama, ibid., vol. 3, pp. 137, 140; M. P. Savedoff, Nuovo cimento **13**, 12 (1959); P. Morrison, Nuovo cimento **7**, 858 (1958).

²A. I. Akiezer and V. B. Berestetskii, Kvantovaya élektrodinamika (Quantum Electrodynamics), 2nd ed., Fizmatgiz, 1959, p. 359.

³E. Feenberg and H. Primakoff, Phys. Rev. **73**, 449 (1948); C. W. Allen, Astrophysical Quantities, University of London, Athlone Press, 1955, pp. 228, 245.

⁴I. S. Shklovskii, Astronomicheskii zhurnal, **37**, 945 (1960), Soviet Astronomy **4**, 885 (1961).

⁵N. M. Gerasimova and I. L. Rozental', JETP **41**, 488 (1961), Soviet Phys. JETP **14**, 350 (1962).

Translated by E. Marquit 99