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The propagation of magnetic-sound waves of finite amplitude is analyzed by taking into ac­
count the dissipation of energy in the medium. The analysis method is based on a simplifi­
cation of the initial magnetic hydrodynamic equations, which are valid for small initial 
perturbations and small energy dissipation. The concept of simple waves is extended to the 
case of dissipative media. The formation and "smearing out" of wave fronts are studied 
for different types of wave configurations. The spatial scales of the phenomena are deter­
mined. 

1. INTRODUCTION 

SIMPLE waves are known to play an important 
role in magnetohydrodynamics. Among the three 
types of simple waves existing in magnetohydrody­
namics, greatest interest is attached to magnetic­
sound waves. These are plane waves and if their 
velocity and magnetic-field vectors are specified 
in the· xy plane at the initial instant, they remain 
in the same plane in the future. The theory of 
simple waves has been studied by several authors, 
[l-S] who integrated the system of hydrodynamic 
equations in the absence of energy dissipation and 
who investigated certain features in the propaga­
tion of fast and slow magnetic-sound waves. The 
dissipative terms of the equations of magnetohy­
drodynamics come into play only in connection 
with special problems in the structure of station­
ary shock waves. The most complete analysis of 
this type was made by Sirotina and Syrovat-skii.[sJ 

It is of interest, however, to analyze questions 
in the formation and "spreading" of discontinui­
ties. This can be done only by examining ''non­
stationary" solutions, with account of energy­
dissipation effects. Such an analysis has not yet 
been made for magnetohydrodynamics. 

In the present paper we use an approximate 
method [ 7] to obtain solutions of the magnetohydro­
dynamic equations in the form of simple waves, 
with account of the dissipative terms of the equa­
tions. The method is based on the fact that the 
non-linearity of the medium and the energy dissi­
pation in the medium are small. The solutions, 
which are carried to the second approximation, 
enable us to trace the spatial scales of the distor-

tion of the simple waves for arbitrary orientation 
of the magnetic-field intensity vector H, and to 
study the mechanism of formation and "spreading" 
of the shock waves as well as to investigate their 
fronts. The relations obtained are applicable to 
the investigation of particular special limiting 
cases, the transition to which is very simple; the 
results agree with the data obtained previously by 
other methods. 

2. FORMULATION OF THE PROBLEM AND 
DERIVATION OF THE APPROXIMATE 
EQUATIONS 

Proceeding to an examination of the propagation 
of waves of finite amplitude in the half-plane xy, 
it is necessary in general to specify at the initial 
point (x = 0, y = 0) small perturbations of the 
velocities Vx and vy. of the density p, of the 
pressure P, and of the magnetic field intensity 
hy. Corresponding to these perturbations are 
accelerated and retarded magnetic-sound waves, 
which propagate without practically interacting 
with each other, owing to the difference in the 
phase velocities. In fact, in the first approxima­
tion (for infinitesimally small perturbations of 
vx, vy. p, P, and hy) the following equation holds 
for the rate of propagation of the accelerated and 
retarded magnetic-sound waves u1, 2:[s] 

1 {[ 2 H2 1 H xuo ]'(, [ 0 1 H• Hxuo ]'!,} 
U1 2 = - u + - - ---- + u- - --- - ----

. 2 o 4rtp0 ' V :rtpo - o ' 4npo V :;tp0 • 

(1) 

Here u0 = -./ yP 0 I Po is the velocity of sound, P 0 is 
the pressure in the unperturbed medium, Po is the 
density of the unperturbed medium, and y = cp/cv 
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is the ratio of the specific heats at constant volume. 
Thus, the accelerated and retarded magnetic­

sound waves can always be regarded separately, 
except in the particular case Hy = 0 and H~ 
~ 47rp 0u~, so nonlinear interactions between waves 
can manifest themselves only in the second order 
of smallness compared with nonlinear self-action 
of the waves. 

The problem consists of finding the solutions of 
the system of magnetohydrodynamic equations in 
the form of simple waves propagating in a direc­
tion x > 0, when small perturbations of the veloc­
ity, density, pressure, and magnetic-field intensity 
are specified in some definite manner at the initial 
point, and the radiation conditions are satisfied at 
infinity. It is actually sufficient, for example, to 
specify at the point x = 0, y = 0 the x-component 
of the velocity, Vx, and assume vy. p, hy, and P 
to be specified in accordance with the formulas 
for infinitesimally small perturbations. 

Thus, considering small velocities Vx and vy. 
small deviations of the density p' and small devia­
tions of the magnetic field intensity hy from their 
equilibrium values Po and h 0, and specifying the 
equation of state in the form 

(2) 

we must assume that Vx, vy « u1, 2, p' « p0, hy 
« H0 and p « P, or, introducing the small par am­
eter J-1., 

p' 

Po' 
(3) 

By introducing the new variables x' = JJ.X and 
T = t- x/u1 2 into the initial system of equations, 

' we neglect everywhere the small terms of order 
J-1.3 and higher. After simple but cumbersome 
transformations, the initial system reduces to 
the following four equations: 

op' 1 ( vx ) op' Po (' u~p' u~p' vx ) ovx --- 1-- -+- 1-r-+----
ox u1.2 u1.2 o-r u~ u~.2po u~. 2po u1.2 o-r 

+ HyPo ( 1 _ _2_) ov y 

H xu~ u1. 2 OT 

(7) 

OVx 1 ( p')0Vx 1 ( Vx)Op' --- 1+- -+- 1-- --0 ox u1. 2 Po iJT Po u1. 2 _ OT - ' 
(8) 

(9) 

(10) 

We have left the x unprimed throughout Eqs. (7)­
(10). 

It is well known that in the case of simple ve-
i.e., Vx, vy. p' and hy are of first order of small- locity waves the density, the pressure, and the 
ness and P is of second order· magnetic-field intensity are functions of one and 

The bulk and shear viscosities TJ and t, the heat the same combination of the independent variables 
conduction K, and the magnetic viscosity f3 = c~ I 47ra x and t. In the first approximation it follows from 
(c0 is the velocity of light and a is the electric con- (7) _ (10) that one can assume a combination of in-
ductivity of the medium) are also assumed small dependent variables ( t- x/u1 2 ) and express vx, 
quantities of the first order of smallness, i.e., vy. p' and hy (and conseque~tly also P) simply 

r R (4) in terms of each other: '1], .,,x, t' ~ft. 

In the case of infinitesimally small perturbations, 
i.e., in the first approximation, where the equations 
have no dissipative or nonlinear terms, the follow­
ing solution holds true 

Vx, Vy, p', hy, P = F (t- x/u1.2), (5) 

where F is an arbitrary function of its argument. 
It is natural to assume that in the general case, 

under the assumptions (2) - (4) made above, the 
solution of the magnetohydrodynamic equations has 
essentially the form (5), but the form of the function 
F changes slowly with distance, i.e., 

Vx, Vy, p', hy, P = F (ftX, t- xju1,2). (6) 

(11) 

In the second approximation, however, if we keep 
vx, vy, p' and hy dependent on the same combina­
tion (t- x/u1 2 ), we can no longer express the 
velocity, den~ity, magnetic field intensity, and 
pressure in terms of each other by the simple 
relations (11). It is natural to assume that these 
relations must be supplemented by small second­
order terms. These are the second-order quad­
ratic terms, and the terms due to energy dissipa-
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tion, which are proportional to the derivatives with 
respect to T with coefficients of order J.l. Although 
vx, vy, p', and hy may not have at the initial point 
a geometrically similar distribution with respect 
to T, upon propagation of the initial perturbation 
into the region x > 0 the wave distributions of the 
velocity, of the density, of the pressure, and of 
the magnetic-field intensity should all vary in 
similar fashion. 

The foregoing arguments are confirmed by an 
analysis of the structure of Eqs. (7)- (10), which 
were derived without any special assumptions re­
garding the connections between Vx, vy. p' and hy. 

Finally, the simplest relationships (11) should 
in the second approximation be replaced by the 
following equations, which are compatible with 
each other (apart from arbitrary constant coeffi­
cients yet to be determined ) : 

ul 9 u21 2 u21 ') a,/ v - _ .. p' - _. ~ p'2 - -·- "" __!__ (12b) 
X - Po p~ 1 pg j 1 a-r , 

(12c) 

(12d) 

Hy av - r y 
H (1 - u2 I u2 ) 3 --a:r ' 

X 0 1.2 

(12e) 

(12f) 

Here f3i and Yi are arbitrary constant coefficients, 
with 'Yt• y 2, and y 3 all proportional to J.l. 

From the fact that Vx, Vy, p' and hy are char­
acteristics of a single wave process it follows that 
their x-variations should be described by identical 
equations. After substituting (12b) and (12f) into (7), 
(12a) into (8), (12d) into (9), as well as (12c) and 
(12e) in (10), and after replacing the second-order 
terms with the aid of relations (11), we can indeed 
reduce Eqs. (7)- (10) to an identical form. Simul­
taneously, by equating pairwise the coefficients of 
the nonlinear terms and the coefficients of the sec­
ond derivatives we determine automatically and 
uniquely the values of f3i and 'Yi· 

It is now sufficient to solve one of the trans­
formed equations, say the equation for the x com­
ponent of the velocity, which has the form 

avxfax- Cl.Vxav,cf8,; = 082vxf8-r2 , (13) 

1 ( (2- r) (u2 - u2)2 ·. 

CJ.=?2~(r+I)+ 2 22~2 22° }· 
_uL 2 l {ul. 2 - u 0) , H yuo 1 4np9 

(14) 

H~ [ 2 I - 1 x 2 ( 4 \]} + 41tpo Uo -,- --;;;: + u1.2 3 Tj + s I 

(15) 

Assuming vx to be some definite function of t 
at the initial point, we can readily determine the 
corresponding solution of (13), since the substitu­
tion 

26 aw 
Vx = etW aT (16) 

reduces this equation to the usual form of heat­
conduction equation. In the next section we shall 
consider the solutions of equation (13) at different 
boundary conditions. 

However, before we proceed to the analysis of 
specific physical processes, it is appropriate to 
make the following remark concerning the preced­
ing derivation. By supplementing relations (11) 
with derivatives with respect to T we essentially 
deviate somewhat from the analysis of simple 
waves in the strict sense of this word, for we as­
sume along with the dependence on the arbitrary 
combination ( T = t- x/u1, 2 ) also a dependence on 
the derivative with respect to this combination of 
independent variables, albeit with a coefficient of 
order J.l, made up of dissipated coefficients. This 
deviation must actually be regarded as a general­
ization of the concept of simple waves to include 
the case of dissipative media. 

3. INVESTIGATION OF THE PROPAGATION OF 
MAGNETIC-SOUND WAVES AND OF THE 
STRUCTURE OF SHOCK WAVES 

The case of sinusoidal boundary conditions 
(vx =vox sin wt) was considered by the authors 
in detail in a solution of the acoustic problem.C1] 
It is expedient here to consider only very briefly 
the final results of an analogous analysis for 
magnetic-sound waves for the purpose of com­
paring them with results obtained in ordinary hy­
drodynamics. We shall determine in passing the 
magnetohydrodynamic analogues of the Mach and 
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Reynolds numbers, which we need for the subse­
quent analysis. 

The entire region of propagation of magnetic­
sound waves (x > 0) can be subdivided into three 
sections. As the wave propagates towards the 
x > 0 direction the nonlinear effects bring about 
a distortion of the wave profile, so thatatapoint x1, 

defined by the relation kx1 = 1/M, a quasi-discon­
tinuity is formed. Here k = w/u1 2 is the wave 

1 ' . number and M = Y2f (u1, 2, u0)v0x/u1, 2 1s the mag-
netohydrodynamic analogue of the Mach number.* 
The function f ( u1, 2, u0 ) is the expression in the 
curly brackets of (14), and is readily seen to be 
positive for all values of H and for any orienta­
tion of this field; its numerical value lies between 
'Y + 1 and 3. 

A comparison of x1 with the analogous param­
eter of ordinary hydrodynamics, x{, shows that 

(17) 

for equal initial perturbations Vox and v0• At the 
same time, by specifying a definite magnetic-field 
intensity vector, we can directly evaluate u1 and 
u2 graphically, as was done for example by 
Syrovat-skii,[9] and determine the characteristic 
points x1 corresponding to these velocities simply 
in the form x1 R:: x{(u1, 2 /u0 ) 2• 

The occurrence of the "discontinuity" is ac­
companied by a strong energy dissipation, which 
causes the quasi-discontinuous wave to be trans­
formed in the second region (x > x1 ) into an ex­
ponentially damped harmonic wave of frequency w. 
This process can be regarded as completed at the 
point x2, defined by the relation kx2 = 4Re/M, 
where Re = av0x/2wo is the magnetohydrodynamic 
analogue of the Reynolds number, and takes into ac­
count the simultaneous influence of the bulk and 
shear viscosities, the heat conduction, and the 
magnetic viscosity of the medium. It is important 
to note that neither the characteristic points x2 

nor the amplitude of the signal at these points de­
pend on the amplitude at the input of the system, 
Vox· We can derive for the points x1 a formula 
analogous to (17), but with cubic dependence on 
the velocity ratio. 

In the third region ( x > x2 ) the propagation 
process can be described by the linear equations 
of magnetohydrodynamics, since the waves are 
already so weak that there are no nonlinear ef­
fects, and no reconversion of the sinusoidal wave 
into a shock wave takes place. 

Without reporting the data obtained on the struc­
ture of the front of the shock wave, which are quite 

*In analogy with the acoustic analogue of the Mach 
number Mac = (y + 1) Vo/2u0 • 

analogous to the earlierC 7J solutions of the acoustic 
problem, we proceed directly to a determination of 
the solutions of greatest interest to magnetohydro­
dynamics. 

Assume that at the initial point we are given 
the x component of velocity Vx = vox tanh ( T I To), 
where To» ( av0x/2o )-1 and T ranges from - oo 

to + oo. Then the function W, which satisfies an 
equation similar to the heat-conduction equation, 
can be written in the form 

cc yj-r'il 

1 \ { To ~ (T- y) 2} W=--= exp -;- thzdz-~ dy, 
2 f :rtl\x • T X 

-00 0 

1 21\ 
T :=-. 

a vox 

(18)* 

When To/T' » 1, i.e., at large magnetohydro­
dynamic Reynolds numbers, the integral (18) is 
calculated by the saddle-point method, so that 
from the relation defining the saddle point Yo and 
from the value of Vx at this point [given by Eq. 
(16)] we can generally speaking find a solution in 
the form 

T :tVoxX T ( + -=Arth<D--<D, rD =ih-. 19)+ 
~ ~ ~ 

A graphic analysis of the solution obtained (Fig. 1) 
demonstrates quite clearly how the profile of the 
initial perturbation is distorted as the wave propa­
gates. The degree of distortion of the initial per­
turbation is determined here by the value of the 
slope X= av0xx/T0, which increases in direct 
proportion to the distance covered by the wave 
from the entrance of the system. The "discon­
tinuity'' point corresponds to the distance x1 

= T 0 /av0x, and when x > x1 the function <I> be­
comes multiple-valued, which is a physical ab­
surdity. In this case, however, the solution (19) 
is itself not valid; the principal value of the in-

FIG. 1. Plot of the solutions 
of (19). 't/'1:0 = f (<I>) (heavy 
curve) is the sum of tanh <I> and 
a straight line with slope X: 
a- \X\ < 1, b- \X\= 1, 
c- \X\> 1. 

*th =tanh. 
tArth = tanh-J. 

c =*·!<· 
I 
I 
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tegral must now be calculated as the sum of its 
values over the small portions in the vicinity of 
the points y1 and y2, so that after calculating W1 
and W2 and after substituting W = W1 + W2 in (16), 
the analysis of the form of vx after formation of 
the "discontinuity" must be based on the expres­
sion 

th CY1 I 't'o) + th (Y• I 't'o) e-Y 
Vx = Vox y • 

1 + e-
(20) 

where 

I Y \ = I~ [u'(·'' th z dz - uf, th z dz] + (-r- Y2)
2

- (-r- Y1)
2 I . 

,-' ~ ~ 41\x 
0 0 

The value of I Y I is easy to calculate if it is rec­
ognized that ( T - y 1, 2) = ± OI.Voxx at the saddle point, 
and if the integrals of the hyperbolic tangents are 
expanded in powers of T and only the first approx­
imation is used. Then Vx =Vox tanh ( rlr' ), where 
r' is the duration of the shock-wave front, has the 
value 11Re when reduced to dimensionless form. 
Thus, the width Lf = u1,2 Tf of the shock-wave 
front established near the point x1 remains sta­
tionary (unlike a sinusoidal front) and is given 
by the formula 

' 2 u1.2 { 2 2 2 , 2 2 H! Lf = U1.2't = -v- (uu- Uo) [1'] -r ~Pol- (u1.2- Uo) -1'] 
u ~~ 

H! [ j- 1 x • f 4 )]} + 4np0 u~ -~- c;; + ui.2 \3 1l + ~ _ 

X {roul.2[<r+ 1) 4:~0 u~+3(ut2 -u~)2Jf1 
(21) 

Relation (21) goes in the limit into various particu­
lar magnetohydrodynamic discontinuities (parallel 
shock wave, perpendicular shock wave, singular 
oblique wave, etc.), which need not be analyzed 
here, since transitions of this type have been 
studied in detail by Sirotina and Syrovat-skii.[G] 
We need only point out here that the expressions 
determining the width of the front of the shock 
waves, obtained in [G] and in the present paper by 
different methods, coincide. 

Particular interest is attached to an examina­
tion of the following boundary-value problems: 

(22) 

i.e., when the x component of the velocity is speci­
fied at the initial point in the form of a discontinu­
ous function with Lf = u1, 2Tf = 0. It is natural to 
expect the dissipative processes to predominate 
here from the very outset, so that the spatial 
scales of the established stationary width of the 

front will differ from those in the two preceding 
problems. 

Thus, let the velocity Vx at the initial point be 
defined by (22). Then 

0 

W = - 1- [ \ ex {- JL - (-r -- y) 2 
} d 

2 l/ nl\x .l p T' 41\x y 
• -co 

00 

+ ~ exp { ~' - c.-~/)2} dy J (23) 
0 

or, after reducing the exponential expressions to 
quadratic form, we obtain (T' = 2ol01.v0x) 

- 't' + cwoxx 

Z+= 2VIIx . (24) 

The analysis of the spatial variation of Vx, car­
ried out in accordance with (16), is now more diffi­
cult. First, for x sufficiently large to satisfy the 
condition x ::::: T I OI.Vox in the region T ::::: 2 ..f6X, 
the x component of the velocity is simply given by 

Vx = Vex th {'t/T'), (25) 

The quantity r', determines as before the duration 
of the front of the shock wave and its dimensionless 
value is 11Re. Thus, at sufficiently large distances 
from the entrance to the system, the width of the 
shock-wave front displays no dependence on x and 
remains stationary. 

Knowing the stationary duration of the front of 
the shock wave T = T st• we can indicate a value 
x1 beyond which T = Tst• namely: 

We determine by the same token the interval 
[ 0, x1 ] within which the stationary width of the 
front of the shock wave is established. 

(26) 

It remains only to determine the variation of 
Tf in the indicated interval. This variation can 
readily be ascertained by starting from the follow­
ing considerations. When x < T I 01.v ox and I T I is 
sufficiently large, one of the integrals in (24) can 
be neglected as having equal limits, so that we ob­
tain Vx = I Vox 1. Assuming this approximation to 
be possible when the lower limits of the integrals 
in (24) are greater than unity in absolute value, 
we can express T as a function of x: 

T = 2 V6x+ CWoxX. (27) 

However, even at the limiting point (26), the second 
term of formula (27) is {2 times less the first 
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one, so that the law of establishment of the station­
ary width of the shock-wave front can be simply 
determined to be 

(28) 

i.e., the growth in the width of the front of the shock 
wave is proportional to the square root of the dis­
tance from the entrance to the system covered by 
the wave before Lf reaches a stationary value. 

Finally, it is interesting to consider the propa­
gation of an arbitrary unit pulse, which for sim­
plicity can be assumed to be triangular (Fig. 2a), 
in a certain interval [ 0, {3] such that the initial 
perturbation of the x component of the velocity 
remains of order J.L while the area of the triangle 
Pox remains constant, i.e., 

_ { 2P ox~-l (1- 't / ~), 0 ~ 't ~ ~. 
Vx- 0 't<O,'t>f3. 

{3 

Pox=\ Vox ( 1 - T) d-r. (29) 

An exact analytic expression for Vx, obtained 
in accordance with (16) after calculating W and 
the logarithmic derivative is, however, rather 
cumbersome. It is therefore advantageous, with­
out writing out the expression, to plot the varia­
tion of Vx with T for different distances from the 
entrance to the system, obtained on the basis of 
the exact solution. 

First, for sufficiently small distances x s xi 
= 6{32/2 ( aP0x)2, the distortion of the pulse is such 
that its profile can be broken up into four charac­
teristic regions (Fig. 2b), so the maximum of the 
pulse amplitude shifts to the right of the point 
T = 0 and there are simultaneously formed on its 
edges gently sloping portions (regions I and IV), 
on which the profile of the pulse is described by 
the following equations:* 

4 Pox v- { 't2 } r-
Vx = yzn [32 bx exp - 41\x for l' < -~ 2 l CJX, (30) 

4 Pox -v- { (~- 't)2} 
Vx = ~r- ~ bxexp - -,~,- for T> ~· 

r 2n ,_," ·wx 
(31) 

The boundaries of the first and fourth regions are 
defined as T1 = -4f6X and TIV = {3 + 2..f6x, re­
spectively. The second region, corresponding to 
the values of T within the interval ± 2 ..f6x from 
the point T = 0, is the region of the leading front 
of the pulse. When x =xi this region reaches a 
value 1/Re (in dimensionless units ) . In the third 
region the deviation of the pulse from its initial 
configuration is still insignificant when x s xi. 

*The magnetohydrodynamic Reynolds number is assumed 
to be much greater than unity, Re » 1. 

FIG. 2. Triangular 
unit pulse at different 
distances from the en­
trance to the system. 
a-x=O, b-x:S.x• 
= 8{3'/2 (a. Pox)' 
c- x' < x < x, = 4 
Re/2 a. Poxf3-->, 
d- X:::_ X2• 

I I 

b~ 
~ 

c I I 

~ 
I I 

d I 1 I , ---r-=-====--r---=====-=--
r)J r 

Further propagation of the pulse causes the 
maximum of Vx to shift in the direction T- {3 
and broadens the regions I and IV and the region 
of the leading front at the expense of the third 
region (Fig. 2c), which is reduced. As the pulse 
attenuates, its form tends to be symmetrical, so 
that the duration of the front does not remain sta­
tionary, but increases as Tf = 2..f6x, so long as 
the concept of Tf retains in general a physical 
meaning. 

At sufficiently large x, namely when x;:: x2 

::::; Re/2aPoxf3-2 the following relation holds for all 
four regions (Fig. 2d): 

2P v-v Vx= T exp{-W-T)2 /4bx}/ Re 2ctP0xxN2. (32) 

The parameter x2 is quite analogous here to the 
corresponding parameter in the boundary problem 
Vx = Vox sin wt, while the parameter xi corre­
sponds to the analogous parameter of the bound­
ary-value problem (22). 

The last thing to be emphasized here is that the 
pulse configuration of Fig. 2b corresponds to any 
single pulse at a definite distance from the en­
trance to the system. 

4. CONCLUSION 

The system of magnetohydrodynamic equations, 
in the case of small nonlinearity and low energy 
dissipation in the medium, reduces to a system of 
like equations similar to (13). In the case of dissi­
pative media, the simple waves are regarded here 
as waves in which the density, velocity, pressure, 
and magnetic-field intensity depend not simply on 
a definite combination of independent variables 
( T = t- x/ui, 2 ), but also on the derivative with 
respect to this combination. An investigation of 
an equation such as (13) for one of the velocity 
components of the magnetic-sound waves Vx or 
vy, for the magnetic field intensity hy, or for 
the density p' enables us to study the laws of 
propagation of waves with different initial forms. 
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Such an analysis of waves of various configu­
rations has shown, first, that in the absence of a 
discontinuity at the initial point (x = 0, y = 0 ), 
a discontinuity can be formed under certain con­
ditions at a distance x1, proportional to 1/M, 
from the entrance of the system. Second, a dis­
continuity specified at the initial point becomes 
"spread out" as Tf = 2.f6X, and attains at a dis­
tance x 1 = 2o/(av0x)2 a dimensionless width 1/Re. 
No further "smearing" of the front takes place 
only in the case of specially chosen functions 
(second and third boundary-value problems), for 
which 1/Re is thus found to be the stationary 
width of the front. Third, at a distance x2 ~ Re/M, 
which is independent of the value of the initial per­
turbation, the amplitude of the wave is also inde­
pendent of the amplitude at the entrance to the 
system, and wave propagation for x > x2 can be 
described by the linear equations of magnetohy­
drodynamics. 
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