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We obtain an expression for the diagonal element of the transverse conductivity tensor of a 
semiconductor in a strong magnetic field, taking the interaction between the conduction elec
trons with one another into account. We assume the conduction electron dispersion law to be 
isotropic and quadratic. The electron-phonon scattering is considered in the Born approxi
mation. The general expression is studied for the case where the electrons satisfy Boltz
mann statistics and where the electron-electron collisions are described also in the Born 
approximation. As an example of an application of this expression we evaluate the height 
of the resonance conductivity oscillations predicted in [1]. 

l. In a previous paper by the authors [1] (in the U (r, t) = u + u· = cqbl-i(wt-qr) + c;b~ei(wt-~rJ. (1) 
following referred to as I) we obtained an expres
sion for the diagonal element of the transverse 
conductivity, axx, of semiconductors in a strong 
magnetic field,* caused by the inelastic scattering 
of the conduction electrons by the lattice vibrations. 
We did not take then into account the electron
electron interaction. It is the aim of the present 
paper to take into account the influence of this in
teraction upon the conductivity for the case of an 
isotropic, quadratic electron spectrum. 

One shows easily that because of the conserva
tion of momentum during electron-electron colli
sions the quantity axx is equal to zero for a sys
tem of mutually interacting electrons. It can be 
different from zero only owing to interaction with 
some other scatterers, for instance, phonons. In 
that case when there is a strong magnetic field 
present (axxlaxy « 1 ), the role of the electron
electron interaction will only make itself felt in 
the renormalization of the electron-phonon scat
tering potential as far as the first non-vanishing 
approximation in the scattering-to which we re
strict ourselves-is concerned. 

To understand qualitatively the expected char
acter of the effects we start with a phenomenolog
ical consideration, generalizing a method proposed 
by Doniach [2] to the case where there is a non
vanishing magnetic field H. Let a vibration with 
frequency w and wave vector q propagate in an 
isotropic crystal. When we neglect the electron
electron interaction, the correction to the electron 
energy when this vibration is taken into account is 
of the form 

*The notation is the same as in I. 

The function cq characterizes here the electron
phonon interaction (expressions for it for different 
cases are given, for instance, in I) and the dimen
sionless quantities bq determine the vibrational 
amplitude. The extra term (1) in the energy causes 
the free charges in the crystal to be rearranged 
and this leads to a violation of local neutrality and 
hence to the appearance of an additional electro
static potential which, taken together with (1), re
normalizes the electron-phonon interaction. Since 
this effect is linear in the interaction we perform 
a renormalization of the first term in (1). The re
sult for the second term is obtained by taking the 
complex conjugate of the first term. 

Let the renormalized interaction be of the form 

- - ( ) i(qr - OJI) u=uqffie · 

The change in the electron density caused by it is 
determined by solving the equation for the density 
matrix p: 

ap!at +(il!l) [p, J£1 = o, (2) 

where JC = JC0 + u, JC0 is the single-electron Hamil
tonian operator while the square brackets indicate 
a commutator. Putting p = p 0 + p' (p0 is the equi
librium density matrix of a system of non-inter
acting electrons ) , we find 

where r and ~ stand for the totality of quantum 
numbers characterizing the single-electron states 
when there is no perturbation, Er = < r I JCo I r) ' 
v is the adiabatic parameter corresponding to the 
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assumption of an infinitely slow switching on of the 
electron -phonon interaction ( v > 0, v - 0). 

In the coordinate representation (a is the spin 
variable) we have 

P:a' (r, r') = ~ p~Ll'ljl~ (r, cr) 'iJr (r', cr'), 
rD. 

from which we get for the Fourier component of 
the electron density 

where V0 is the normalizing volume and 

(3) 

However, as we noticed earlier, the renormal
ized potential u is the sum of the "bare" potential 
u and the electrostatic potential ecp, which is de
termined from the Poisson equation 

(5) 

whence 

~ [ 4ne2 o - 1 uq = I+ -n •v Kq (- oo)] uq. 
Eo q o 

(6) 

We now establish the connection between the re
normalization coefficient in front of uq in (6) and 
the permittivity of the crystal. To do this we note 
that Eq. (6) is independent of the actual form of the 
interaction, and depends only on the properties of 
its space and time periodicity. In particular, one 
may assume that D = - E0'Vu is the ''bare" elec
trical field, i.e., the electrical induction vector. 
In that case E = - 'Vu is the total electrical field 
and the coefficient connecting them, 

4ne2 o 
ell (w, q) = e0 + 1iq'Vo Kq (- w) 

is the longitudinal component of the permittivity 
tensor, taking time and space dispersion into 
account. 

(7) 

If we do not take electron-electron interaction 
into account, the probability for an electron-phonon 
scattering is proportional to I cq 12• The present 
calculation shows that taking this interaction into 
account is equivalent to replacing the transition 
probability I cq 12 by 

i Cq \2 {[1 + e::;:Vo Re K~(oo)T 

[ 4ne2 0 ]2}-1 _ I cq 12 
+ eofiq2Vo Im Kq (oo) = A2 + B• • (8) 

In the Boltzmann statistics case and when the 
conduction electron spectrum is quadratic and iso-

tropic one can easily evaluate the function (4) and 
according to Larkin [a] 

Re K~ (oo) = 2;~; [ W (q:T + 2~T)- W (q:T - 2:T) J • (9) 

Im K~ (oo) 

=Vo nVn(1q~e-1i'"~) exp [1i~f3- (q:rf- (z:TrJ' 
X 

W (x) = e-x'~ eu' du 
0 

(10) 

( n is the electron concentration and {3 = 1/k T) 
when there is no magnetic field. The form of these 
functions and therefore also of the expressions for 
A2 and B2 in (8) depends on the relation between 
VT and w/q. When w/q » VT 

A = 1 - 4rre2 n I e0mw2 = 1 - oo~ / w2, (11) 

B is exponentially small and expression (8) turns 
out to be larger than its renormalized value when 
w is close to Wp. This means physically that the 
electron-phonon interaction and thus also the scat
tering probability increases steeply when the phonon 
frequency approaches the frequency of the natural 
vibrations of the electron system, namely the 
plasma frequency Wp. * 

We note that the ratio w/q is equal to the sound 
velocity w for acoustic phonons. But as a rule 
VT » w in the Boltzmann statistics region and it 
is thus practically impossible to excite plasma 
oscillations by sound if H = 0, since the inequality 
w/q » VT cannot be realized. When w/q « VT 

A = 1 + 4n:ne2 1 e0mkTq2 = 1 +(xI q) 2 

and the renormalized expression (6) turns out to 
be less than the unrenormalized expression by a 
factor 1 + ( K/ q )2 ( 1/ K is the Debye radius ) . 
This is due to the effect of the screening of the 
phonon potential, which decreases the electron
phonon interaction and thus also the scattering 
probability. 

The magnetic field introduces additional com
plications in this picture. For instance, when 
H = 0 plasma effects are practically unobservable 
since the dispersion of the optical vibrations is 
small and one must select the impurity concentra
tion specially in order that the frequency of the 
optical vibrations turn out to be near the plasma 
frequency. In a magnetic field, the plasma spec
trum occupies a wide region of frequencies from 

*This phenomenon is complicated by the fact that in the 
case of a sufficiently exact resonance the electron system 
may show a reciprocal influence on the phonons, changing the 
phonon frequency[~ (see also Appendix II). 
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Wp to n ( n = eH/mc is the Larmor frequency) 
and the equality between the plasma frequency and 
the frequency of the optical phonons is achieved 
much more simply. 

Unfortunately an application of these simple 
methods to a rigorous analysis of the role played 
by the above-mentioned effects in transport phe
nomena is unjustified. The point is that phonons 
with wave vectors q .<: qT are important for such 
phenomena, yet it does notfollow directly at all that 
for such dimensions of the spatial inhomogeneity 
these effects can be described by the self-consist
ent field method with some kind of single-electron 
potential. This problem is essentially a many
particle one and one therefore needs solve it by 
means of many-particle quantum theory methods. 

2. To construct a rigorous theory we start 
from Kubo's formula [4] for axx in a form which 
is convenient for an expansion in powers of the 
electron-phonon interactionC5J 

0 

Oxx = ~: Re ~ evt (e-f3:H,T c { exp [ ~ U (z) ~~ J vx (t) vx (0)}) dt. 

-oo (12) 

Here 0 is the operator of the x component of the 
total (summed over all electrons) velocity, Tc 
indicates ordering along the contour C, depicted 
in the figures by dot-dash lines, 

U (z) = exp (i3f1z I 1i) U exp (- i:1f1z I 1i), 

( ... ) = Sp ( ... ) I Z, 

(13) 

(14) 

and Z is the partition function. Furthermore, JC 
= JC1 + U, where JC1 = JCe + JCp, JCe the Hamiltonian 
of a system of mutually interacting electrons in a 
magnetic field H which, when we choose the gauge 
A= (0, Hx, 0), is of the form 

N 

l'fP n2 'V [ n2 2 · -2 iJ + -4 2] + e2 'V 
Ohe =2m .LJ - vi- ta X;;;-: a X 2eo .LJ ...,..~---...,..~ 

i=1 uy, i+k ri- rk 

(15) 

( N is the number of electrons, ri the position co
ordinate of the i -th electron, a 2 = en/ eH); U = u 
+ u+, where 

U = ~ ~ Cqbqe'qr;, 
q i 

(16) 

bq (bq) the creation (annihilation) operator of a 
phonon in the state q; and JCp the phonon Hamil
tonian. 

To study the properties of the operator JCe we 
introduce Jacobi variables 

pk = (n + r2 + ... + rk) I k- rk+1, 

p N = r = ( r1 + r2 + . . . + r N) I N. (17) 

Inversely 

k-1 1 1 
rk = r --k- Pk-I +k+1 pk + ... + N PN-1' 

N-1 
rN = r- -N- PN-1" (18) 

One verifies easily that in the new variables 

3fe = 3f0 (r) + :1f2 (p), (19) 

where JC0 ( r) is the operator of the orbital motion 
of a free particle of charge Ne and mass Nm. The 
Hamiltonian JC2 commutes with PN = r. In other 
words, one can split off the center-of-mass motion 
in the system of interacting electrons in a magnetic 
field, and the solution of the equation 

(20) 

is of the form 

(21) 

where 1/JA. (r) are the orbital wave functions of a 
particle of charge Ne and mass Nm, character
izing "external" states, and F 1(p) stands for all 
wave functions describing the "internal" states of 
the electron system. Similarly 

EL = Et + 8;>., 

In the new variables 

Vx = - (in I m) a I ox, 

'V iqr 'V iq(r;-r) -- 'V iqr 
u = .LJ cqbqe .LJ e = .LJ Cqbqe fq (p ). 

q . q 

(22) 

(23) 

(24) 

We assume the electron-phonon interaction to 
be weak and restrict ourselves, as in I, to the 
second-order term in the expansion of (12) in 
powers of U. To evaluate it we apply to ( 12) the stand
ard method of disentangling exponential operator ex
pressions under the Tc-product sign. In this way it 
turns out to be possible to write (12) as a sum of twelve 
terms, each of which corresponds to a diagram similar 
to the diagrams of Konstantinov and Perel' PJ but 
with the difference that all electron lines in it 
(except one ) are proper ones, i.e., directed along 
the contour C. Each electron line going from the 
point z2 to z 1 corresponds to a factor 
exp [EL(z 1 -z2)/iti]; the only improper electron 
line corresponds to an additional factor 
exp (-,BEL); each phonon line corresponds to a 
factor (Nq+1) exp[-iwq(z1 -z2 )], if z2 is ear
lier than z 1 (proper line) and to Nq exp [- iwq 
( z 1 - z 2 )] ( Nq is the Planck function of the phonon 
frequency wq). if z 1 is earlier than z 2 (improper 
line); each vertex corresponds to a factor 

Cq (L ll:eiqrz I L') = Cq (A I eiqr I A.') (ll {q 1 l'); (25) 
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the terminal t to a factor 
' iooLL't X iwt..A't <L I vx I L ) e = v~.~.·e {)II', (26) 

and the terminal 0 to a factor 

(27) 

Here liWLL' = EL- EL'. In the final expression 
we integrate over z1 and z2 between limits that 
follow from the form of the diagram, and we sum 
over q and over all indices of the electron system. 

By virtue of the properties of the functions (22), 
(25), (26), and (27) the matrix elements for transi
tions between internal states of the system enter 
as independent factors and therefore all diagrams 
have the common factors 

(28) 

We want to sum the diagrams a to f (see fig
ure) and the diagrams a' to f' which differ from 
the ones illustrated in the figure by the direction 
of the phonon line. Using the identity 

v~A' I (v + iron·) = ('}.,I X- x~. I').,') (29) 

(X A. is the coordinate of the center of the Landau 
oscillator in the state A.) and using the matrix 
multiplication rules we find that diagram a is 
equal to 

-~·~.· 
-~,"'V, +"( e+- + )(11'leiqriA)('}.,Ix-X~.·I').,') 

L.; L! v 1 wq -, w1'"'"' wml 
').."),' j.l~J.' 

X ('}.,'I e-iqr I 11) <111 X- Xp. I 11') 

(we have for the sake of simplicity not written down 
the factor (28) or the summation signs for summing 
over q, l, and m ) . The expression for diagram b 

a 

d 

differs from (30) only by the general sign and by 
the fact that instead Of the difference X- Xf.J.' the 
difference x- X A.' enters in it. The sum of dia
grams a and b contains thus a factor 

Xp.' - x~.. = (eli I eH) qy, (31) 

which is independent of the summation indices and 
is equal to 

X <111 x&qr I'}.,)('}., I e-iqr I 11)· (32) 

We show in the Appendix that the contribution 
to (12) from expressions of the form 

(A I iqr I J.L) (J.L I xe-iqr I A) {N q 

X v+i(wLM±w) Nq+ 1 
(33) 

is equal to zero. The second term in (32) which 
after summation over q, l, and m reduces to the 
form (33), can thus at once be dropped. 

When diagrams c, d, e, and f are summed the 
factor (31) can also be split off. In the sum of 
these four diagrams it is also possible to perform 
two summations, using the rules of matrix multi
plication. If we drop terms which give a zero con
tribution by virtue of (33), we get for this sum 

-~·;. 

- Re ~ (Xp.- X~.) x~. +. ( e _ + ) I <A.\ eiqr I 11 > \2 • 
V L WAlL Wq Wtm 

Ap. (34) 

Finally, the sum of the diagrams a to f is 
2n ~ 

- n• ~I cq 12 (Nq + 1) .LJ (Xp.- X~.) 
q LM 

xx~.e-~EL I<LI~iqr; IM>I2 lj(roLM- ffiq)• (35) 

b c 
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The sum of the diagrams a' to f' is the same ex
pression, but with - wq in the o-function replaced 
by wq and Nq + 1 by Nq. Transposing in this ex
pression the dummy summation indices L and M, 
adding this to (35) and taking into account the 
identity 

-~EL -~EM 
e () (wLM- wq) (Nq + 1) = e () (wLM- wq) Nq 

(36) 

and relation (35) we get finally 

Clxx = (;~2 (e~)" ~ d3q q~ I Cq 12 Nq<Dq (wq), {37) 

<I>q (w) = Z-1 ~ I (L I ,Leiqr1 1 M) l2e -BEL() (wML- w). (38) 
LM 

(37) is exactly the same as Eq. (8) of I. The latter 
was derived from the formula of Kubo, Hasegawa, 
and Hashitsume [6] which expresses axx in terms 
of the correlator of the operators of the velocity 
of the motion of the center of the Landau oscillator. 
But this formula itself was derived in [6] from an 
equation such as (12), using a number of additional 
assumptions. The present derivation starts di
rectly from (12) and does therefore not depend on 
additional assumptions. 

Moreover, it will be convenient for us to change 
in the expressions for <I>q ( w) to a second quantiza
tion representation and to take a Gibbs average. 
To do this, we put 

B~ = ~/2"i = ~ ~ d3np+ (r, a) eiqr'ljl (r, a) 
t a 

= ~ (f I eiqr I~) a;atl, 
rt1 

where lf! ( r, a) = ~ t:.. ae:..lf! t:.. ( r, a) is the electron 
wave function in the second quantization represen
tation, ae:.. (a,;.) is the annihilation (creation) 
operator for an electron in the state t:... Then we 
have 

<l>q (w) = Z-1 ~ exp [- ~ (EL- t-tNL)J () 
LM 

(40) 

where N is the particle number operator. Accord
ing to I, <I>q ( w) can be expressed in terms of 
Kq ( w ), the Fourier component of the two-particle 
retarded Green's function with pairwise equal ar
guments, through the formula 

<I>q (w) = Im Kq (w) j :rt (1- e-li"'~). (41) 

In [ 3] a method was proposed to evaluate Kq ( w) 

for the case H = 0; this method was generalized in 
a paper by the authors [ 7] for the case of a non
vanishing magnetic field. According to [ 7] 

I [ 4:rte2 J Kq (w) = Ilq (w) 1 + eoliq% Ilq (w) , (42) 

where IIq ( w) corresponds to the sum of all con
nected Matsubara diagrams (see [3] and [7]). 

Taking (37) and (41) into account we get then 

X {[1 + 41in~•v Re Dq (w)J2 + [ 41in:v2 Im Dq (w)]•}-1. 
eo q o eo q o (43) 

We see that in the general case it is not at all pos
sible to arrive at a simple renormalization of I cq 12 

of the form discussed in Sec. 1. However, in anum
ber of cases, we have with fair accuracy 

Ilq (w) = ~ (w), (44) 

where ~ ( w) can be expressed by the sum (4) and 
corresponds to the simplest diagram which is of 
the form of a loop of two electron lines.C1•3• 7J 

When a strong magnetic field is present (a 
= tW/2kT » 1) one can easily justify the approxi
mation (44) for the case where the Born parameter 
is small e2 I e: 0tivT « 1 (small effective masses 
and large values of e: 0 favor the satisfying of this 
inequality). However, there are grounds for hoping 
that in reality (44) is valid when the weaker condi
tion e 2n113je:0kT « 1 (average energy of the Cou
lomb interaction between the electrons small com
pared to the thermal energy) is satisfied. 

If (44) is valid, 

<I>g (w) = Im K~ (w) I :rt (1 - e-liwf3). (45) 

The renormalized interaction in (45) has, indeed, 
the form (8). Our rigorous theory justifies thus 
the application of the self-consistent field method 
in this case. 

We obtained in I an expression for Im ~ ( w) 
for the case H ~ 0 in the form of a series which 
was particularly convenient to use in the quantum 
limiting case when it converges very rapidly* 

Im K 0 (w) = :rt(1-e-li"'f3)<D0 (w) = n-y1tVo(1-e-n"'i3) 
q q I qz I vT 

( 1iw[3 q}_ a2 cth ct ) 
x exp ----;r- - 2 

~ I ( q}_ a• ) [- (NQ- w)2 q; J x Li N __ exp 2 2 --
N=-oo 2 sh ct qzvT 4qj · 

(46) 

*cth = coth, sh = sinh. 
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Using similar methods we find 

o 2n V o q .l a a.N q .l a ' 2 2 ) 
00 

( 2 2) 
Re Kq (w) = ~ exp ( --2- cth a N~oo e IN 2shct. 

X [w (nq;;zm+w+NQ)-\- w(nq;;zm-w+ NQ)]. 
1~1~ ~~~~ ' 

(47) 

3. Using Eq. (45) we can in principle consider 
the effects caused by the Coulomb interaction be
tween carriers which were mentioned in Sec. 1. 
Here we study one such effect. In I we predicted 
theoretically peculiar resonance oscillations of 
the transverse conductivity in a magnetic field 
which are caused by the scattering of the elec
trons by phonons with a non-vanishing limiting 
frequency w0 (optical phonons ). The oscillation 
maxima are determined by the condition w0 = N0Q 

( N 0 is an integer ) and, for instance, when a » 1 
we have near w0 = Q (N0 = 1)* 

c1 3:t '1 c1 3 (nw0~)'/, 1 
::>xx = ::>xx 2 V nnwo~ In zy = ::>xx 4 V n In aT6i, (48) 

where a~ is the classical value of the low-tem
perature transverse conductivity evaluated in I 
and 6 = ( w0 - Q )/ w0• Expression (48), as also 
Eqs. (48) and (50) in I which are suitable for ar
bitrary N, give an infinite height of the oscillating 
peak for w0 = NoQ· 

Mathematically, this infinity is caused by the 
fact that when w0 is exactly equal to N0Q the in
tegral over qz of the N0-th term of the series 
(46) diverges at the lower limit. We did not con
sider in I the mechanisms limiting this infinity. 
If, however, we take these into account, the loga
rithm in (48) has a finite value at w0 = N0Q and 
is equal to 

In (1 I abc), (49) 

where 6c « 1. The second term in the denominator 
of (45) is proportional to the square of (46) and thus 
tends to infinity as 1/q~ when qz- 0. The Cou
lomb interaction between the scatterers is thus 
able to limit the height of the resonance peak. 
This mechanism is, of course, not the only one, 
but the cut-off determined by it can in a number 
of cases turn out to be the most effective one; in 
the present paper we shall evaluate it. 

We restrict ourselves to one of the experimen
tally most interesting cases: N0 = 1 (first oscil
lation), a= tm/2kT » 1 (quantum limit). We 
shall here not be interested in the shape of the 
resonance line and simply evaluate axx for 

*We note that in the corresponding Eq. (SO) of I the coef
ficient 1/rr% was omitted by mistake. 

Q = w 0• It is clear that small qz ( qz « q T) and 
q1 ~ 1/a play a role in the resonance region. How
ever, in the important region of q 

(50) 

and when q1 ~ 1/a the first term in the denomi
nator in (45) can be assumed to be equal to unity. 
The interval q1 « 1/ a cannot play a role as long 
as the first term does not tend to zero in it. In 
actual fact, it takes on a zero value, generally 
speaking, but one can show that all contributions 
from the region of small ql are negligibly small, 
all the same. 

Moreover, in the series (46) only the term with 
N = 1 will play a role and all other terms are ex
ponentially small. Finally, for the interaction with 
the optical phonons 

! Cq 12 =A I q2::::::; A I q3_, 

where the expression for A was given in I. The 
problem is thus reduced to an evaluation of the 
following expression 

x exp (- q3_a2 -~) {r + 4:n:(~)4 (CJI.) 2 
2 4q2r q.l qz 

X sh2 n~o~ n (;~ha:) exp (- ;;} - q3_ a2) r (51) 

We take further into account that apart from 
exponentially small terms 

h (q3_ a2 I 2 sh a) = q3_ a2 I 4 sh a, 

and we change to new integration variables x 
= qia2/2, y = q~/4q~: 

00 

ne2 -li,w ~ (liwu )'/, \" -x 
::lxx = 4 -v l1 Q2fo e ' w ~ xe dx 

0 r e-Ydy 

X J Y + (l1 I 16) (xa)4e 2<x+u> ' (52) 
0 

where t 0 = (27Tli2/ A)(tiw0 /2m )1/ 2• When (Ka)2 « 1 
the integral over y is equal to 

16 
In -c ( )• + 2x, (53) 

l1 1 xa 

where C1 = eC, C = 0.577 is Euler's constant. Per
forming the integration over x we get finally 

c1 3 v-- 4e2 
::lxx = ::lxx , 1 _:. hw0~ In V , 

4 y l1 :aC1 (xa)4 
(54) 

where according to (49) of I 

a~} = (2ne2 I 3mQHo) fiwo~e-nw,,s. (55) 

Comparing (48), (49), and (54) we find 
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(56) 

where R = mvTc/eH. 
To elucidate when this mechanism of cut-off 

plays the main role we determine the cut-off, tak
ing the dispersion of the optical phonons into ac
count. Let the optical phonon frequency be 

sufficient to transpose in the expression with Nq + 1 
the summation indices L and M, to replace q by 
- q and to take the identity (36) into account. We 
use further the relation 

lm {(J..Jxefqri!l)(!lJe-iqr\J..>} =- +f-J<J..Jei<:rJfl)Jz. 
qx 

(A.3) 

(57) However, by definition 

where a 0 is of the order of the crystal lattice 
constant. Calculations completely similar to the 
ones we just performed give the following result 

(58) 

This quantity is as a rule considerably less than 
(56). 

We must finally give an estimate of the cut-off 
caused by the broadening of the energy levels due 
to collisions. Very rough estimates in a paper by 
Adams and Holstein [B] give 

(59) 

where r is a characteristic life time of the electron 
in the given state. Attempts to estimate this quan
tity more accurately run up against serious difficul
ties. From a comparison of (59) and (56) it is, how
ever, clear that the electron-electron interac-
tion may in a number of cases be the main mech
anism restricting the height of the oscillations. 

APPENDIX I 

We show that an expression of the type 

q 

when summed with the same expressions, where 
Nq and wq are replaced by Nq + 1 and - wq gives 
zero. We put 

(L I x~/qr1 1 M) (M I ~e -iqr; I L) 
Re = :rtl\ (wLM + wq) 

v + i (wLM + wq) 

+ p ~ {(L I x~eiqr; I M) <M I e-iqri 1 L)} 

WLM+wq 
(A.2) 

( P indicates the principal value ) . The contribution 
in (A.1) from the first term in (A.2) to the sum with 
the same expression, but with Nq and wq replaced 
by Nq + 1 and - wq is zero. To verify that, it is 

:rt ~ 1\ (w,_P. + w) I (J.. I efqr I !l) 12 e -~·"=Z- 1 <1>~ (w), (A.4) 
'-P. 

where Z is the appropriate partition function. 
Using the representation (45) one obtains easily 
the rule for differentiating this function: 

a~x <I>~(w) =- qxa2 cth (J. <l>~ (w) 

+ :2q;~2a l <I>~ ( w + R) + <I>g ( w - Q) I. (A.5) 

Substituting (A.5) and (A.4) into (A.1) and taking 
into account that a non-vanishing contribution can 
only come from the second term in (A.2) we get 
finally the following expression for (A.1): 

- <l>q ( w - wq + Q) I 2 sh a 

- <I>q (w- Wq - Q) I 2 sh a]. (A.6) 

Since cl>q, I cq 12, and wq are essentially even func
tions of qx this expression vanishes which con
cludes our proof. 

APPENDIX II 

When analyzing the causes producing the cut-off 
of the oscillations we must bear in mind still the 
two following factors which occur because of the 
interaction between the phonons and the electrons: 
damping of the phonons and renormalization of 
their frequency, thanks to which there occurs for 
them an additional, rather strong dispersion. We 
show that both these factors are unimportant for 
the present problem. 

We are interested in the case of a low electron 
concentration and a weak electron-phonon interac
tion. One can show that under those conditions 
when taking these effects into account it is suffi
cient to introduce renormalized phonon lines to 
each of which must be assigned a causal Green's 
function which is equal to[S,10] 
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( ';" I ~ Pq (w) e-iw(z,-z,) dw, if the line is a proper one, 

iD (q, Z1 - Z2) = 1---:x,oo (A.7) 

~ p (w) e-fiw~-iw(z,-z,) dw if the line is_an improper one; 
~-ooq. ' 

As a result we get instead of (37) 

(A.8) If we substitute this expression into (A.9) the inte
gration over dw disappears and we get Eq. (37). 
This is because when the electrons interact with 

00 

axx = (e2~ j 8n2)(c I eH)2 ~ dw ~ d3q qz[cq [2 <I>q (w) pq (- w). 
-oo (A.9) 

This expression corresponds to a sum of Matsubara 
diagrams with electron lines renormalized by taking 
phonons into account and with electron-phonon ver
tices. 

In accordance with [ 9] 

P. (w) = - Jt (1 - e-fiw~t1 Im {DT (q, WN) !wv-+iw+"}, 
' ' . (A.10) 

where D T ( q, WN) is the temperature dependent 
Green's function, and wN = 27rNkT/n. It satisfies 
the equation ( cf. [to]) 

DT(q, WN) = D~ (q, WN) 

+ n-2 D~ (q, wN) Kq (-iroN) DT (q, wN). 

According to Eq. (7b) of I, I cq 12 = 27rliw0e2/V0q2Ec, 
Ec1 = Eij1(oo)- Eij1(0). We have then 

Pq (w) = 2wq Im {w2q ( 1- ~eoc) 
1t (1-e fiw{l) 

(A.ll) 

The poles of the function D T ( q, iw ) give the re
normalized phonon frequencies and the damping of 
the phonons due to their interaction with the elec
trons. In those Q1 and qz regions where Im IIq ( w) 
is large and leads to a limiting of the oscillations, 
the second term within the curly brackets in (A.ll) 
is unimportant and in that region we obtain only an 
inappreciable shift of the resonance frequency* 
(when the coupling parameter is small, E0 /Ec « 1) 
Far from w = NU we obtain rather interesting sin
gularities of the renormalized phonon spectrum, 
but they are unimportant for the present effect. 

In conclusion we turn our attention to one inter
esting singularity of expression (A.9). For free 
phonons 

*We note that according to Born and Huang[u] the elec
tron-electron interaction operator in an ionic crystal contains 
E,(oo), the permittivity on the plateau of the dispersion curve. 

free phonons there corresponds to a given value 
of the momentum transfer nq a completely deter
mined value of energy transfer nwq. When the 
phonon damping is taken into account there occurs 
an uncertainty in the phonon energy and momentum. 
As a result the energy and momentum transfer 
are no longer connected with one another during 
electron-phonon collisions and axx has the form 
of an integral over all possible values of the en
ergy and momentum transfer (cf. [iJ). 
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