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The low energy limit for the yN scattering amplitude is derived with the aid of single-nu­
cleon invariant amplitudes. Subsequent terms in v for Q2 = 0 and the expression for the 
limiting value of the first derivative in Q 2 as Q 2 - 0 can be obtained by taking into account 
the conditions of crossing symmetry. 

BMW" [ 2W Q2 ] 
T• + T. = (W•-M•)• I+ M (W +MJ• (Ra -R•) 

16W3Q2 

- (W + M)2 (W"- M•)• (Rl - R•), 

where W is the total c.m.s. energy and v and 

l. Low, Gell-Mann, and Goldberger showed [1] that 
the condition of relativistic and gauge invariance 
makes it possible to express the limiting value of 
the amplitudes for the scattering of low energy y 
quanta on spin-1/ 2 particles and the limiting value 
of the derivative of the amplitude with respect to 
the frequency as v- 0 in terms of the charge and 
magnetic moment of the particle. This result was 
later generalized [2] to the case of elastic scatter­
ing of y quanta by particles with other spins and 
also to the case of bremsstrahlung. [a] The result 
for elastic scattering also holds when only CP in­
variance is assumed. Consideration of the single­
nucleon terms in the dispersion relations for '}'N 
scattering [4- 6] also leads to the limit theorem. 
(A similar result holds for bremsstrahlung.['[]) 

Q2 are two invariants characterizing the kinemat­
ics of the process; W2 - M2 = 2Mv + 2Q2• 

The pole terms for Ti(v, Q2) have the form [6] In the present note, we derive the limit theorem 
for '}'N scattering on the basis of the single-nu­
cleon terms. The requirement of crossing sym­
metry for the invariant functions Ti(v, Q2) 

( = 1, ... , 6} makes it possible to obtain addi­
tional terms for the limiting values of the functions 
Ri(v, 0), which characterize the 'YN scattering 
matrix in the center-of-mass system, and also 
the limiting values of the derivatives of the ampli­
tudes with respect to Q2 as v- 0. (For the defi­
nition of the quantities Ti and Ri see, e.g.,[GJ.) 

2. The invariant functions Ti(v, Q2) are related 
to the scalar functions Ri(v, Q2) (i = 1, ... , 6) in 
the following way: 

BMW2 [ W- MQ"] 
TI - Ta = (W• _ M•j• v- W + M M (Ra + R4) 

4W [ 4Q•w• J 
-(M+W) 1-(W•-M•)• (Rt +R•), 

BMW 2 [ 2W Q2 ] 
T2- T4 = (W•- M•)• I+ M (W + M•) (Ra + R4) 

4W [ 4Q•w• ] + (W + M)" 1- (W•- M•)• (Rt + R•), 

o e2 v 
r. = M Q4/M2 - '11 2 ' 

~=0, 

o e1 (1 +A.)' v 
T.=- M Q4/M2 -v2 ' 

o o e2 (1 +A.) Q2 

Ts = MTs = M Q'IM"- v•, 

where we have used the system of units in which 
11 = c = 1 and the magnetic moment is 
11 = e ( 1 + A. )/2M. 

For Q2 = 0, it follows from (1) that 

(2) 

2~ 2~ 
(Tt + Ta)o = Mv (Ra- R4)o, (T2 + T•)o = Mv• (Ra -R•)o, 

w• 
(Ts)o = - Mv (Ra - R•)o, 

w 
(Ts)o = Mv 12 (Rs + Rs) + Ra + R•J. 
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Differentiating the relations in (1) with respect 
to Q2, we obtain, in the limit Q2 = 0, 

• 2W2 • 4W • 
(T1 - Ta)o = Mv (Ra + R4)o- w + M (R1 + R2)o 

2 (2W3 + M2W + M3) 

- M•v• (W + M) (Ra + R4)o 

+ w (W 4+ M) [ :.:. - w ~ M J (RI + R2}o, 

• 2W2 ' 4W ' 
(T2- T4)o = Mv• (Ra + R4)o + <W + M)• (R1 + R2)o 

4 [ ws M•J + M•v• (W + MJ• - M- v (Ra + R4)o 

4 [ W3 1 2 J 
- (W + M)' M•v•- W + M + W (RI + R2)o, 

• 2W2 • 
(T1 + Ta)0 = Mv (Ra - R4)o 

2 (2W3 + WM• + Ms) 
- M•v• (W + M) (Ra - R4)o 

4W3 

+ (W + M) M•v• (R1- R2)o, 

, 2W2 • 
(Ta + T1)0 = Mv• (Ra - R4)o 

+ 4 (Rs- R4)o [ W3 _ M _ M'] 
M 2v2 (W + M)• v 

4W3 (R1- R2lo 
(W + M)2 M 2v2 

· w• [ 2w• · (T s)o = Mv M•v• (Rs - Rs}o - (Ra - R4)o 

+ W~v (Ra - R4}o] , 

• W [ .2W2 

(Ts)o = Mv - M•v• (Rs + Rs}o 

+ (2Rs + 2Rs + Ra + R4)' 

M+v J - w2v (2Rs + 2Rs + Ra + R4) . (4) 

It is seen from (2) that the terms T1 - T3 and 
T2 + T4 do not contain poles for Q2 = 0. It then 
follows from (1) that (R1 + R2)0 and (Ra ± R4)o/ v 
are finite when v- 0. 

Since the functions (T2 :r T4)0 have a singularity 
of the form 

it then follows from (1) that 

(Rs ± R4)o = _ ~ [1 ± (1 + A.)2) (5} 
v 2M2 

as v- 0, which is in accordance with the limit 
theorem. 

Since T5 and T6 do not contain poles when 
Q2 = 0, the quantity (R5 + R8)/v should remain 
constant as v- 0. Similarly, from the condition 
that (T1 ± T3)6 contains a pole of the second order 

(Tr ± Ta)~p = -2e2/Mv2, 

and that v(T2 - T4)0 does not contain a pole, it 
follows that 

(6) 

and (R3 ± R4)6- const and v(R1 ± R2)6- const as 
v- 0. 

Since 

we conclude that 

(Rs ± Rs}o = ± e1 (1 +A.) v/2M2, (7) 

and (2R5 + 2Rs + R3 + R4)0- const as v- o. 
We see that formulas (5)-(7) obtained from 

consideration of the pole terms (2} contain the re­
sults of the limit theorem for Q2 = 0. 

3. It is of interest to note that with the aid of 
the conditions of crossing symmetry one can ob­
tain additional information on the low energy limit. 
It follows from crossing symmetry that, for ex­
ample, the quantity T1 - T3 should be an even 
function of v. If in the first relation of (3) we make 
the substitution 

e• 
(R1 + R2}o = - M + a1v + ... , 

(Ra +R4}o = - 2~2 [1 + (1 +A.}2) v +aav2 +... (8) 

and take into account the fact that W = (M2 + 2Mv)112 

Rl M(1 + v/M) for small v, then from the condition 
that there is no linear dependence on v we obtain 
the relation 

o:aM- 0:1 = (e2/M) [+ + (1 + 11,}2]. (9) 

It follows from the requirement of crossing 
symmetry that the quantity v(T2 - T4) should be 
an even function of v. 

The absence of a linear dependence of the terms 
on v leads to the relation 

aaM = (e2/M) [f + (1 + A.) 2]. (10) 

From (8)-(10) we have 

(R1 + R2)o = - ~ ( 1-~) + 0 (v1), 

(Ra + R4}o = - 2~2 ( 1 - ~) v 

- 2~2 (1 + A) 2 ( 1-~)v + 0 (v3). (11) 

The functions T1 + T3, T5, (T2 + T4), and T6 

should be even functions of v. Similar considera­
tions lead to 

(Ra- R4)o =- :!~2 [1- (1 + A)2 l (1-~)v + 0 (v3), 

(12) 
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and 

12 (R• + R6) + Rs + R4lo 

e2 2 ' v) s 
=- 2M"/.. ( l-M v + 0 (v ), (13) 

e! (1 +A.) 
(R6 + Rs)o = 2M 2 v 

+ ::.r .. l/..2 - 3 - 2 (l + /..) 21 v2 + 0 (v3). (13') 

The function (T1 - T3)0 is an even function of 
v. Inserting in (4) 

(Rs + R4)~ =a; + ... , (R1 + R2)~ = a~/v + ... , 

we obtain from the condition that there is no term 
proportional to 1/v 

2Ma;- 2a~ = (e2/M) II- 2 (l + /..) 2 1. 

A similar condition for the even function 
v(T2 - T4)0 leads to 

2Ma; =- (e2/M) 13 +2 (1 + /..)2 ). 

Then ai = - 2e2/M2, and therefore 

• e2 1 
(R1 +R2)o = -2M•v+O(l), 

' ~ ( (Rs + R4)o = - 2M 2 13 + 2 (l + /..)21 + 0 (v). 14) 

The condition that the poles of the first order in 
the even functions (T1 + T3)0 and v (T2 + T4) vanish 
leads to 

(R1- R2)o = -~(1-~) + 0 (v2), 

(Rs- R4)~ = 2~. 1- 3 + 2 (I +WI + o (v). (15) 

Similar conditions for the functions (T5)6 and 
(T6)0 require that 

, - e• (1 + A.) e• I ' 1 ') (R• - R6)o - - 2M2 v +4M3 - 2 T 8 ( + r. 

+ (1 + /..)21 v2 + 0 (v3), 

It should be kept in mind that the expression for 
the limiting energy is valid for amplitudes in the 
center-of-mass system. The result obtained can 
be useful for analysis of the scattering of 'Y 
quanta by nucleons with the aid of the dispersion 
relation technique. 
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