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The low energy limit for the yN scattering amplitude is derived with the aid of single-nu-
cleon invariant amplitudes. Subsequent terms in v for Q? = 0 and the expression for the
limiting value of the first derivative in Q% as Q*— 0 can be obtained by taking into account

the conditions of crossing symmetry.

].. Low, Gell-Mann, and Goldberger showed (1] that
the condition of relativistic and gauge invariance
makes it possible to express the limiting value of
the amplitudes for the scattering of low energy vy
quanta on spin—1/2 particles and the limiting value
of the derivative of the amplitude with respect to
the frequency as v— 0 in terms of the charge and
magnetic moment of the particle. This result was
later generalized (2] 6 the case of elastic scatter-
ing of ¥y quanta by particles with other spins and
also to the case of bremsstrahlung.l*) The result
for elastic scattering also holds when only CP in-
variance is assumed. Consideration of the single-
nucleon terms in the dispersion relations for yN
scattering [4-6] 31s0 leads to the limit theorem.

(A similar result holds for bremsstrahlung.[?)

In the present note, we derive the limit theorem
for yN scattering on the basis of the single-nu-
cleon terms. The requirement of crossing sym-
metry for the invariant functions T;(v, Q?)
(=1, ..., 6) makes it possible to obtain addi-
tional terms for the limiting values of the functions
Rj(v, 0), which characterize the yN scattering
matrix in the center-of-mass system, and also
the limiting values of the derivatives of the ampli-
tudes with respect to Q* as v— 0. (For the defi-
nition of the quantities Tj and R; see, e.g.,[f.)

2. The invariant functions Ti(v, Q% are related

to the scalar functions Ri(v, Q*) (i=1,..., 6)in
the following way:
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where W is the total c.m.s. energy and v and
Q? are two invariants characterizing the kinemat-
ics of the process; w? - M2 = 2Mv + 2Q°%

The pole terms for Tj(v, Q) have the form (]
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where we have used the system of units in which
h =c =1 and the magnetic moment is
p=e(l+x)/2M.

For Q% =0, it follows from (1) that

(T1 — To)o = 50 (Ro + Ro — " (Ru + Ro) o,

(Ts — Tao = 202 (Rs + Ra)o + (T,;é_zm(kl + R,

(Tx + To)o = 50° (Rs — Ra)o, (T2 + Ta)o = 2 (Rs — R,
(Tdo = — o (Rs — Rao,

(Tedo = 7212 (Rs + Re) + Rs + Ral.
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Differentiating the relations in (1) with respect
to Q%, we obtain, in the limit Q% =0,
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It is seen from (2) that the terms T; — T3 and
T, + T, do not contain poles for Q* = 0. It then
follows from (1) that (R; + Ry), and (R3 = Ry)y/v
are finite when v — 0.
Since the functions (T, ¥ T,), have a singularity
of the form

2 2
(5 + 5,
it then follows from (1) that
Rod R Co11 + (1 + 4 (5)

v
as v— 0, which is in accordance with the limit
theorem.

Since T; and Tg do not contain poles when
Q? = 0, the quantity (R; + Rg)/v should remain
constant as v— 0. Similarly, from the condition
that (T; + T3); contains a pole of the second order
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(T1 + Ts)op = — 262/ Mv?,

and that (T, — T,); does not contain a pole, it
follows that

Ry Re)o = — /M, (6)

and (R + Ry)j — const and »(R; + R,); — const as
v— 0.
Since
(Tehop = M(TeJop = — & (1 + A) /2M2,

we conclude that
(Rs 4+ Re)o = +¢€® (1 4 ) v/2M?, (7)

and (2Rs + 2Rg + Rg + Ry)y— const as v— 0.

We see that formulas (5)—(7) obtained from
consideration of the pole terms (2) contain the re-
sults of the limit theorem for Q2 =0.

3. It is of interest to note that with the aid of
the conditions of crossing symmetry one can ob-
tain additional information on the low energy limit.
It follows from crossing symmetry that, for ex-
ample, the quantity Ty — T3 should be an even
function of v. If in the first relation of (3) we make
the substitution

(R1 + Re)o =——€/2W+a1v +...,
(Rs +R)o = — 5o (1 + (1 + 121 v - av? ... (8)

and take into account the fact that W = (M2 + 2Mp)!/?
~ M(1 + v/M) for small v, then from the condition
that there is no linear dependence on v we obtain
the relation

asM — on = (/M) [+ 4 (1 +4)2] . (9)

It follows from the requirement of crossing
symmetry that the quantity »(T, — T,) should be
an even function of v.

The absence of a linear dependence of the terms
on v leads to the relation

wM = @M) |3+ (1 +12]. (10)
From (8)—(10) we have
(Ri +ReJo = ——=-(1—37) +0 (),
(R3 + Ra)o = —2%5<l —BA—/IV—>V
— o +x)2(1_?ﬂ})v +0 (V). (11)

The functions Ty + T3, Ts, (Ty +Ty), and Ty
should be even functions of v. Similar considera-
tions lead to

(Ro— Ro = — gz 1 — (1 + 21 (1=3)v +0 S
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and
[2 (Rs + Re) + Rs + Ralo

= (1=3)v +00Y. (13)
(Rs + Re)o =& (;/a;x)
+ A2 —3—2(1 + M2V 40 (V). (13")

The function (Ty — T3); is an even function of
v. Inserting in (4)

(Rs +Ra)o =05 +. . .,

we obtain from the condition that there is no term
proportional to 1/v

2Mag — 20y = (/M) [1 — 2 (1 + A)2].

(Ri + Re)y = ay/v + . . .,

A similar condition for the even function
(T, — Ty)y leads to

2May = — (/M) [3 +2 (1 + A)2].
Then af = —2e¥M?, and therefore
(R +Ra); =—221 0,
(Rs + Rijo = — 5 3 +2 (1 + 121 +0 ().

The condition that the poles of the first order in
the even functions (T; + T3); and v (T, + T,) vanish
leads to

(R — Rao = —5 (1 —3) o,
(Rs — RiJo = 5 [— 3 +2 (1 + 272 +0 ().

(14)

(15)

Similar conditions for the functions (Tj); and
(Tg)y require that
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(Rs— Rpo = —SCAD y 1 T2 480+

+ (@1 + M1 +0 ),

(Rs -+ 2Rs + Rs -+ Ri), = — - (2A* — 2A — 1). (16)

2M3

It should be kept in mind that the expression for
the limiting energy is valid for amplitudes in the
center-of-mass system. The result obtained can
be useful for analysis of the scattering of ¥
quanta by nucleons with the aid of the dispersion
relation technique.
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