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The scattering of slow neutrons in a Fermi liquid is investigated theoretically. The cross 
sections for direct scattering and scattering involving the excitation of zero and ordinary 
sound are determined. 

l. The purpose of the present paper is the theo­
retical investigation of the scattering of slow neu­
trons in a Fermi liquid. It is known that, for suf­
ficiently low temperatures, specific sound waves 
-the so-called zero sound (Landau,[!] Klimonto­
vich and Silin [2])-may propagate in such a system. 
We shall show that these waves can be excited by 
irradiating the Fermi liquid with slow neutrons 
whose velocity exceeds the velocity of the zero 
sound. 

The investigation of the scattering of slow neu­
trons in liquid He3, which is a Fermi liquid, can 
therefore serve, in principle, to verify the exist­
ence of the zero sound. 

Besides the scattering with excitation of the 
zero sound (and ordinary sound), direct scattering 
of the neutrons by the nuclei of the Fermi liquid 
is also possible. In these scattering processes the 
energy transfer and the scattering angle are not 
correlated, whereas in scattering processes con­
nected with the excitation of collective degrees of 
freedom and having the character of Cerenkov 
radiation, the scattering angle is a unique function 
of the energy transfer. 

2. The Hamiltonian for the interaction of a 
slow neutron with the nuclei of the Fermi liquid is 
given by a sum of Fermi pseudopotentials: 

2nli2 · 
:Je = -"7 ~(a + bsK,) b (r- r,), (1) 

where r, ri, and s, Ki are the radius vectors 
and the spins of the neutron and the i-th nucleus, 
m' is the reduced mass of the neutron-nucleus 
system, and a and b are the coherent and inco­
herent scattering lengths for the scattering of a 
neutron from a free nucleus of the Fermi liquid 
(the quantities a and b are complex owing to the 
absorption of the neutrons by the nuclei). The ef­
fect of the Fermi liquid comes most clearly into 

play for small neutron momentum transfers ~Pn· 
We shall therefore assume in the following that 
I ~Pn I «Po· where Po is the limiting momentum 
of the Fermi liquid. Under these conditions we 
can replace the summation over i in (1) by an in­
tegration over p (ri, ai, t) dri, where p is the 
density of nuclei with spin projection Cl!i at the 
point ri of the Fermi liquid: 

::;e = -(2rt~2/m') (a + bsK(r)) p (r, :~., t). (2) 

The deviation of the density of the Fermi liquid 
from its equilibrium value Po is clearly equal to 
op ='= J onpdTp, where dTp = (27rti)-3dp (p is the 
momentum of a quasiparticle of the Fermi liquid) 
and onp is the deviation of the quasiparticle dis­
tribution function from its equilibrium value 

n~ = [ exp ( ep-; ~ ) + 1 rl 
(£p is the energy of the quasiparticle, !;; is the 
chemical potential). onp satisfies, according to 
Landau, [3] the equation 

, a aeP a \ . 
( Tt +-a- a£ i 6np (r, t) . p . 

ano (' a 
- a: Spk' ~ f Tr 6np· (r, t) d-r:p• = I {6np}· 

Here I is the collision integral, and f = f (p, p') 
+ K· K'q(p, p') is a quantity which characterizes 
the interaction of the quasiparticles. At absolute 
zero onp = (11 + K·~)o (£p- !;;), where 11 and ~ 
are certain functions of n = p/p and r, t. The 
monochromatic oscillations onp (,... ei(q · r-wt)) 
satisfy the equations 

(tli -cos 0) vq1 (n) = cos 6 ~ F (X) Vqi (n') do' /4rt, 

(11; - cos 6) !1-qi (n) = cos 6 ~ G (X.) !1-qi (n') do'/4n, 

where e is the angle between n and q, 'X is the 
angle between p and p', do' is the angular part 
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of the volume element of p-', 7Ji = s/vo, 7Ji = sifvo, 
Si = Wi/q, si = wi/q are the propagation velocities 
of the oscillations of the quantities v and p, (the 
index i denotes the kind of oscillation), v0 is the 
Fermi velocity, and the quantities F and G, which 
are proportional to f(p, p') and g(p, p'), deter­
mine the change of the energy of the quasiparticle, 
which is related to the change of the distribution 
function by 

oep = ~ (Fv' ++ Gf.L'K) do'/4n, 
(5) 

v' = v (n', r, t), 11' = 11 (n', r, t). 

For sufficiently low temperatures, when there 
is very little absorption of zero sound, the scatter­
ing of the neutron and the excitation of the zero 
sound can be interpreted as the emission of a 
quantum of zero sound by the neutron. This proc­
ess is described by a Hamiltonian which differs 
from (2) in that p is replaced by the change of the 
density of the Fermi liquid caused by the zero 
sound oscillations. 

In order to calculate the emission probability 
for a quantum of zero sound, we must quantize the 
zero sound. For this purpose we must first deter­
mine the energy of the oscillations of the zero 
sound, 

p,+&p, 
E = ~ dr Sp ~ ep d-rp + ~ ~ dr Sp ~ oep onp d-rp. (6) 

P=·Po 

where Ep = v0(p - Po) and op0 = (v + K ·p,)/v0 is 
the change of the Fermi momentum connected with 
the oscillations of the Fermi surface [the second 
term in (6) takes account of the interaction be­
tween the quasiparticles]. Using (5), we obtain 

E - p;, (' d {\' ( .2 + 1 2) d 
- ( 2nli )3 vo J r ~ " 4 1-L 0 

(7) 

This expression should, of course, have the form 

E=2_;(Nq;++)nw;+ 2_; (NqiA++ )nw;, (8) 
qi q. i, A 

where Nqi is the number of quanta of zero sound 
of the type vi and frequency Wi, and Nqi;\ is the 
number of quanta of zero sound of the type IJ-i• 
frequency wi, and polarization ;\ = 1, 2, 3. Ex­
pression (8) follows from (7), if we expand v and 
p, in terms of plane waves: 

_ (2nli)'/, 'V (_!_ 1i ·)'/, { . ( ) . i (o.r-w; I) v - Po .Li 2 v 0 w, 'Vq, n Cq,e 
q, l 

+ v~;(n) cte-i(qr-wi I) }, 

(2nli)'/, " • •;, i(qr-w~f) 
•• = -- ;, (2v0nro;) {f.Lqi1. (n) Cq;1.e ' 
' Po 7' q, t, 1. 

* ( + -i (qr-w;l) + f.Lqn. n) Cq;1.e } (9) 

interpret the quantities Cqi• Cqi• Cqi;\• Cqi;\ as 
boson absorption and creation operators for the 
corresponding zero sound quanta, and subject the 
functions Vqi(n) and IJ-qi;\(n) to the normalization 
conditions* (' . 

T]; J[vq; (n) [2 do/cos 8 = 1. 

11; ~I f.Lqi1. (n) [2 do/cos B = 1. 
(10) 

Substituting (9) in (2), we find for the energy of 
the interaction of a neutron with the zero sound 
oscillations 

;;e<o> = _ !!!:':.__-. / IWo {a 'V v'"nw· (A ·c+:e-i(qr-w; I) _]__ h ) 
m' V Jt ~ Y z. z. Ql 1 .c. 

qi 

'V ~~- (B + -i(qr-w.l) . h } + 2 [(a+ bsK) K]c .Li y nw; i1.Cqn.e l -t- .c. ' 
qi1. (11) 

where 

A; = ~ Vq; (n) do, 8;1. = ~ f.Lq£1. (n) do, (12) 

and the bracket [ Y]c denotes the part of Y which 
is coherent in the spins of the nuclei and does not 
contain the nuclear spin operators K linearly; 
m* = Polv0• 

Using the expression for JC(O), we can easily 
determine the cross sections for the scattering of 
a neutron (from a single nucleus) with emission of 
the different types of zero sound quanta: 

da~{ l = -f (m*/m') 2 \ A; [2 1 a [ 2 (s;v0/v~)(1i3q2 dq!p~). da{:; l = 0, 

d (l'i) = ~ (.!!!!'_)•\ B. 12 ~ S;Vo 1i."q2 dq 
c;tt 2 m' tzl 16 2 3 ' 

vn Po 

(13) 

where Vn is the velocity of the neutron, Bi = Bix 
+ iBiy (the z axis is directed along s), the ar­
rows indicate whether the directions of the neutron 
spin before and after the scattering are parallel 
or antiparallel with respect to each other, and the 
indices Vi and Jli denote the type of zero sound 
quantum emitted. 

It is very probable [i] that the simultaneous 
propagation of Vi and Jli waves in the Fermi 
liquid is not possible (at least, if F CX) = const). 
In the following we shall therefore only consider 
the excitation of Vi waves. In this case the con­
servation laws 

Pn = P~ + fiq, (14) 

*To derive these conditions, we must use the relations 

~~ Fv qiV~;dodo' /41t= ~ ('IJ/COS e - 1) I v qi [2do, 

~~ G!lqo.ll~iAdodo'/4n = ~('!]~/cos e - l) lllqiA 12 do. 

which follow from ( 4). 
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must hold, where Pn• En and p0, ED. are the mo­
mentum and energy of the neutron before and after 
the scattering. It follows from (14) that the angle 
J. between Pn and q, as well as the scattering 
angle X• are uniquely determined by the energy 
transfer: 

2p2 - 2msnq- (nq)2 

COS')(= " , (15) 
2pn Y p~- 2msnq 

where s = si and m is the mass of the neutron. 
The first relation shows that vn must be larger 
than s. 

For small scattering angles we have 

cos 'it= slvn, ')(2 = (llqlpn) 2 (1- s2/v';,), (15,) 

nq<Pn· 
In this case the zero-sound quanta are emitted 
under a rigorously defined angle with respect to 
the direction of motion of the neutron (as in the 
Cerenkov radiation). The largest possible momen­
tum of the quantum is equal to liqmax = 2 (pn - ms) 
and the smallest momentum of the neutron after 
the scattering is equal to Pn min = I Pn - 2ms I 
(the neutrons with the minimal energy will move 
along the initial direction of the beam; all these 
relations hold for liqmax «Po). 

It is easy to see that the scattering angle x 
reaches a maximum for tiq = (2/3ms)(p~ - m2s 2). 

This limiting angle is equal to (with Pn Rl ms) 

_ [(1+2£g)J/4-~~]~ (£~-1')'/, _ Pn 
%0 - arccos V ~2 - 3- , £o--

3 ~. ' = 
(16) 

Near the maximal scattering angle Xo the scatter­
ing cross section behaves like 

dcr<v,>·~ q2 dq ~sin 'X dxl V cos 'X -cos ')(o, 'X= 'X0 • (1 7) 

i.e., it contains an integrable singularity. However, 
this result, as well as the proof of the existence 
of Xo itself, was obtained under the assumption 
that the absorption of the zero sound can be neg­
lected (see Sec. 4). 

For small scattering angles the cross section 
dah'i) has the form 

If liqmax « Po• we can determine the total 
cross section for the emission of a quantum of 
zero sound: 

(18) 

c:/vi) = 4 (.!!!_)"I A2 I a 2 s,vo I Pn- ms, )". (19) 
m' i 1 l u~t \ Po 

The quantity Ai depends on the form of the func­
tion F (X). If we assume that F (X) = const, we 
have, according to (10) and (12), 

A = Y 2n ( T]~ - 1) (TJo ln 1]o + 1 - 2) 
1]o- 1 

[2 ~( " 1) ( 1 no+ 1 2)]-'/, X - lJo - TJo n 1Jo - 1 - , 
s 

TJo = -. 
Vo 

(20) 

We note that A vanishes for F- 0. 
3. We now turn to the calculation of the cross 

section for the direct scattering of the neutron by 
the nuclei of the Fermi liquid and to the consider­
ation of the absorption of the zero sound in the 
scattering accompanied by the excitation of zero 
sound. For simplicity we shall assume that the 
energy of the quasiparticle does not depend on the 
orientation of its spin. The cross section for the 
coherent scattering of the neutron without change 
of orientation of its spin, dac, is, according to 
(2), determined by the Fourier component of the 
deviation of the density of the Fermi liquid 
op ( r, t) from its equilibrium value p0, i.e., by the 
quantity J op ( r, t) e-i(q · r-wt) drdt, where hq 

= Pn - Pn and tiw = En - Efi are the changes of 
the momentum and energy of the neutron: 

dac = 2n (i a i21Vn Po) (2nli/m') 2 <D (q, m) dp~/(2n1i) 3 , (21) 

where <I> is the correlation function of the density 
of the nuclei, 

<D (q w) = _!___ (' dr e-iq(r,-r,) (' di eioo(t,-1,) 
, 2n J 1 J 1 

(22) 

and the brackets < ... > indicate the (quantum 
mechanical and thermodynamical) average.* Ac­
cording to the general theory of fluctuations, one 
can calculate the quantity <I> (for T, 1i w « t) first 
in the temperature region T » tiw, and then mul­
tiply the result by the factor tiw ( Nw + 1 )/T, where 
N w is Planck's distribution function: t 
<D (q, m) = -4(1)_ (N.,+ 1) ~ \dr1 e-i~(r,-r,) \dile1"'(1,-l,) 

- . . 
x 6p (n, i1) 6p (r2, i2) (23) 

(the bar denotes the thermodynamical average). 
In order to calculate the correlation function 

<1> ( q, w) with account of the collisions we use the 
method of Abrikosov and Khalatnikov. [5] Introduc­
ing the stray force y (p, r, t) in the kinetic equa­
tion (3) and choosing the collision integral I{ v} 
in the simplest form satisfying the requirements 
of conservation of the number of particles, mo­
mentum, and energy, 

*The general relation between the neutron scattering 
cross section and the correlation function of the density of 
nuclei was established by Van Hove. [•] 

fThis method was used by Abrikosov and KhalatnikovL'] 
in their calculation of the correlation function with neglect of 
the collisions. 
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1 

I {v} = - ·r-1 {v (o) - Vo- 2] v';' P~n (cos 6) eim'"}, 
m=-1 (24) 

where vf are the coefficients in the expansion of 
the function v ( n) in terms of spherical harmonics, 
we obtain the following expression for the average 
value of the product of stray forces: 

y (p, r, t) y (p', r', t') = ZT ( :eP) t'l (r- r') t'l (t- t') 
't' 00 'Cp l; 

.., ( ~') , ""' 2/ + 1 ~ 
X e-"' t'l (e - \;) {::2 1 + Fti(2l + 1) Pz (cos X), 

(dr:pjdep)r, = m•p0/n2li3 , (25) 

where Fl are the spherical harmonics of the func­
tion F ('X). Solving the kinetic equation (3) with the 
stray force y, we obtain a relation between the 
Fourier components of the functions op and y 
(,.., ei(q · r-wt)). Considering only the first two 
harmonics in the expansion of F in terms of 
spherical harmonics, we find 

t'l p ~ - i ( ~:: \ qv1oD ~ y (n) h (n) ~~ ' (26) 

where 

D = 1 + (A 1fo + i'I'}£Ao)- g (A2fo + i'I'}£A1), 

h (n) = 1 - g cos e 
cos e - 11 (1 + i£), 

(T) = w/qv0, ~ = 1/wT). Using (24) and (25), we 
obtain finally the following expression for 4>: 

21iw ( dr:P \ 1 {\ do 
<D(q, w)=r:(qvo)2 dep )l;(Nw+ 1) IDI' .)lh(n)l2 4n 

I \ do '2 I \ do \2} 
- 1 .) h (n) 4Jt 1 - 3 .) h (n) cos e 4Jt • (27) 

If the condition I wIT» 1 ( T,.., T- 2 ) is satis­
fied, the function 4> ( q, w ) has poles for values of 
w which are close to the real axis, w = 170v0q 
- i 'Yo ( T)0v0 is the velocity of the zero sound and 
'Yo is its damping coefficient; an expression for 
'Yo was found in reference 6). Separating out the 
poles of the function 4> ( q, w), we write the latter 
in the form 

<D (q, w) = <D0 (q, w) + <Dd (q, w), (28) 

where the function 4>0 contains the poles of 4>, 
while 4>d is free of singularities. Assuming for 
simplicity that F = const, we have 

" ( dr: ) .,..2 -1 <!J w)-_"!Jl_ _P (N '-1) ·•o 
o(q, - Jt deP ::. "'' f_o_(_l __ "-1']-~---~--f-o) 

X { 'Yo + 'Yo } , (29) 
(w -1']oVoq)2 + ,g (w + 1']oVoq)2 + ,g 

The quantity 4>d is a smooth function of w. We 
can therefore neglect the collisions of the quasi-

particles in the computation of 4>d· 
If F = const, we have* 

<Dd(q, w) = 21iw (ddr:P.) (Nw+1)Ro(~)e(1-M), 
qvo ep l; qvo qvo 

Ro( q~J = {(l + Faw) 2 +( ~ q:" Fo)"}-1
, 

W = 1 - _(Jl_ In I qvo. + w I 6 (x) = { 0 ' x<o. (30) 
2qvo qvu- w ' 1, x>o 

The separation of the poles out of the correla­
tion function corresponds to the separation of the 
coherent neutron scattering cross section into two 
parts: 

d:J(o) = 2n 1 a 12 (. 2rrli ) 2 <D ( w) dp~ _ 
VnPo m' , 0 q, (2nn)3 ' 

d (d) = 2n 1 a 12 (2nli. )z C[J ( ) dp~ 
Clc , d qw ('' ~)". Vn[JO m .::..Jtn 

(31) 

For F = const we find, according to (29) and (30), 

d:J(o) = ~ ( m~ )z I a '2 w (N"' + 1) ~ 1']~ -1 
n m 1 1 vn f0 (1-t'J~+Fo) 

X 'Yo -t- 'Yo _n { } ~ 
/ 2 2 3 ' 

(w -1']oVoq)2 +-'Yo (w + 1']oVoq)2 + 10 P0 
(32) 

da(d) = i (. !'!....). 2 1 a 12 ~ (N + 1) R (~) e (1 - M) dp~ . 
c 2 m' qv n "' 0 qv0 qvo p~ 

(33) 
The quantity da-'0> is the cross section for the 

scattering of the neutron with excitation (or ab­
sorption) of zero sound, and da~d) is the cross 
section for the direct scattering of the neutron 
without change of orientation of its spin. 

If 'Yo - 0, we findt 

<Do w -~(dr:P) (N 1 1']~-1 {6(~- \ 
(q, )- qvo dep::. w+ )fo(i-t']~+Fo) qvo 'I'Jo) 

(29') 

Substitution of this expression in da(O) leads im­
mediately to formulas (13) and (20) for the cross 
section for the scattering of the neutron with ex­
citation of zero sound for F = const. 

We note that the validity of expression (29) is 
limited by the inequalities T -i « I w I « T /li. If 
T;::, liw, we can use only expression (29') for 4>0, 

since expression (29) does not take account of the 
quantum mechanical effect in the absorption of the 

*The expression for ct>d with y = 0 and F = const can be 
taken directl¥ from formula (23) of the paper of Abrikosov and 
Khalatnikov. L•] 

tExpression (29') can be taken directly from formula (23) 
of[ •]. Replacing in this formula 

we take account of the effect of the absorption of zero sound 
on the scattering of light in a Fermi liquid. 
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zero sound, as pointed out by Landau. [1] According 
to the results of[1], however, we may expect that 
formula (29) remains valid also for T $ tiw, if we 
replace 'Yo by 'Y = y0 {1 + (tiw/27l"T)2}. 

4. We have seen above that for 'Y- 0 and 
7'/oVo < Vn < 277oVo the scattering angle of the neu­
tron in the scattering with excitation of zero sound 
cannot exceed a certain limiting value Xo• and the 
cross section for this process becomes infinite 
for x "'Xo· If the absorption of the zero sound is 
taken into account, the scattering cross section 
for x "'Xo will, according to (32), have the form 

da<o) = G (J + 0 (~)) sin x dx, \ £ dl 
J = J (1') -1]o)2 + £2 • 

where 

t = PnlmfloVo, ~ = ~ (X) = riqvo, 'Y] = 'Y] (X, t) = w!qv0 

and G is some function of x. The limiting angle 
Xo is evidently determined by the conditions 

O'YJ (xo, t)!ot It~ = 0. 

For x > Xo the difference 77(x, t) -770, regarded 
as a function of t, does not become zero and the 
integral J is of the order of ~: J = 0 ( 0. For 
x < Xo and ~ « 1 the integral J is equal to 

J =n ~ 0 ('Y]- 'llo) dt + 0 m = n I O'Y]Iot 14' + 0 m ~ 1, 

and dJ0> is given by (13) with an accuracy up to 
terms of order ~· 

Finally, if x Rl Xo, we use the expansion 

'llo - '11 = rx (X - Xo) + ~ (t - io)\ 

where 

and write J in the form 
00 

\ £ dz 
J_= J la(x-xoJ+f3z'f+£'' z = t- to. 

-co 

For X = Xo we then obtain J "' ( 80-112 » 1. 
We see that the absorption of the zero sound 

leads to a "smearing out" of the limiting scatter­
ing angle. 

5. The cross section for the direct coherent 
scattering of the neutron by the nuclei of the Fermi 
liquid (without change of orientation of the neutron 
spin), given by formula (33), differs from the 
cross section for the coherent scattering of the 
neutron without change of orientation of its spin in 
a Fermi gas of the same density by the factor Ro· 
For I w l/qv0 « 1 this factor is independent of the 
transferred energy and momentum and is equal to 
Ro ~ ( 1 + F0 )- 2• Ro- 0 for I w l/qv0 - 1. There-

fore the cross section for direct coherent scatter­
ing into angles close to 

{ 1 '' '2 o o 'o l 
J(d= arccos --, [p;; + Pn- (2mvo)-- (p;,- p,~) 2 lJ 

2PnPn 

is appreciably smaller in a Fermi liquid than in 
an ideal gas. 

If we keep only the first two harmonics in the 
expansion of F, we find for the direct scattering 
cross section 

where the factor R1, which distinguishes this 
cross section from the corresponding cross sec­
tion in the ideal Fermi gas, is equal to 

( w ) ( F 1 ) 2 _ 2 { 2 ( n \ 21_--1 R1 q-v; = l-t-3 L (I -t-FoQ1) + z-11FoQ2)J , 

1]2f 1 { ( n2 ) n2 1 Q1 =w-Q L w2 --,r112 +z-wTJ4F 1J, 
1]2 F 1 { ( 2 rr2 2) } Q2 =I-t- Q 1']F1 w --4- TJ - 2wL , 

L = I -t- F,(+ -t- 1']2w), Q = L2 -f- : 2 TJ 6Fi. 

6. Let us now consider the incoherent scatter­
ing of the neutron in a Fermi liquid. This scatter­
ing, which is due to the quantity b in the pseudo­
potential (1), is of the same type as the scattering 
of a neutron in an ideal Fermi gas of nuclei whose 
mass is equal to the effective mass m* of the quasi­
particles of the Fermi liquid. The total cross sec­
tion for the incoherent scattering (with and without 
change of orientation of the neutron spin) per 
nucleus is equal to 

d:/ = ~(~)2 1 b I 2 ~(N -L I) 0 (I-~) p-3dp'. \(34) 
32 m' qv n "' ' \ qv0 o n 

We note that this expression does not contain (as 
da~d) does) the factor R which depends on the 
correlation between the nuclei. 

It follows from (33) and (34) that there is no 
unique relation between the transferred energy 
and momentum for the direct scattering, whereas 
such a relation does exist (for '}'- 0) in the scat­
tering with excitation of the zero sound [owing to 
the presence of the {j functions in formula (29')]. 
This circumstance allows us, in principle, to 
distinguish between the two types of scattering. 

Let us finally discuss the angular distribution 
of the neutrons for the direct scattering in the 
region of small angles, x « 1. If Vn "' v0, the 
cross section will be proportional to xdx. For 
large neutron velocities the cross section will be­
have like x 2dx. For an estimate of the order of 
magnitude of the cross section, we set R "' 1, and 
obtain for vn » v0 and x « 1 
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da<dl ~-f (m/m') 2 cr0 (pn/p 0) x2 dx, 
cr0 = 4n:(l' a 12 + _2_ 1 b 12) 

I 16 I ' 
(34') 

This expression depends on x in the same way as 
du(vi) does [formula (18)]. The ratio of the cross 
sections is, in order of magnitude, equal to 

dcr<'')!da<dl ~ ($lv0) (1- s2/v;)-'' (35) 

and can be larger than unity if vn "" s; in general, 
however, du(O) "" du<d>. 

7. We saw earlier that the cross section for 
the scattering of neutrons with excitation of zero 
sound oscillations is determined by the poles of 
the function ~(q, w) for I w I T » 1. If I w I T"" 1, 
then ~ does not have poles for values of w close 
to the real axis. For I w I T"" 1 we cannot, there­
fore, separate out of the scattering cross section 
a term corresponding to the excitation of sharply 
defined collective oscillations of the Fermi liquid. 
On the other hand, if I w I T « 1, the function ~ 
again has poles for values of w close to the real 
axis. These poles ( w = 1Jsv0q - i"Ys) determine the 
dispersion law and the damping coefficient of the 
zero sound oscillations (expressions for the veloc­
ity 1J sVo and the damping coefficient l's of the 
sound have been found in the work of Landau [1] 

and Khalatnikov and Abrikosov [GJ). 

Denoting the quantity ~ for I w I T « 1 by ~s• 
we have 

liw (' d-r:p ) f r <D,(q, w) = -.-.> -. (Nw-+- 1) s , 
6nlJ; dep ~ \ (w- lJ,v0qf + ~~ 

(36) 

Substituting (36) in (21), we obtain the cross sec­
tion for the scattering of the neutron with excita­
tion ( w > 0 ) and absorption ( w < 0 ) of zero­
sound oscillations: 

d:J(s) = _·_l (~)":a 2 ~ ffi (N _;_ 1) _1_ 
2n m' 1 I v "' ' 2 

n lls 

x{ ls .. + ls }dp~. (37) 
(W- l]5 Voq) 2 + r; (W + l] 5Voq) 2 + ~~ p~ 

We note that the cross section for the scattering 
of neutrons with small energy transfer ( I w I 
« T-1) is of the order I wIT; for I wl T « 1 we 
can therefore neglect the probability for direct 
scattering as compared to the probability for the 
scattering with excitation of ordinary sound. 

If l's = 0, the cross section for excitation of 
ordinary sound* contains the function 

*An expression for da(s) without account of the attenua­
tion of sound has been found independently and by a different 
method by M. Kaganov. 

o(w -1JsVoq) [see formula (37)]. Replacing 
(271'1i)-3dpD, by (211')-3dq and integrating over the 
angular part of the vector q, we find for the cross 
section for the excitation of ordinary sound with a 
wave vector in the interval (q, q + dq) 

dcr(s) = l1 (m'/m')2 I a i2 (Nw + 1) (v0/vn) 2 fi3q2 dq/T],p~. (38) 

Excitation of ordinary sound is possible only if 

Vn >1JsVo-
Comparing (37) and (32), we see that we can 

obtain the part of du(s) which depends on w and q 
by making the replacements 1Jo- 1Js• l'o- l's in 
the corresponding part of du<0 >. The relations for 
the scattering of neutrons with excitation of zero 
sound are therefore also valid for the scattering 
with excitation of ordinary sound. In particular, 
if l's = 0 and 1JsVo < vn < 21Jsv0, the neutrons can 
not be scattered into an angle which is larger than 
some limiting angle Xs· This angle is given by 
formula (16), ifwe replace ~ 0 by ~s =vn11Jsv0 . 

As in the case of the zero sound, the damping of 
the ordinary sound leads to a "smearing out" of 
the limiting scattering angle. Here the scattering 
cross section for the neutron within the angular 
interval dx (integrated over the absolute value of 
the vector pn_) near the angle Xs is proportional 
to /'st/2. 

8. Unfortunately, the only known Fermi liquid 
He3-has the property that the absorption of 

slow neutrons is very strong. For energies of the 
order of 1 o K the capture cross section for neu­
trons in He3 is CTc "" 105 x 10-24 cm 2, whereas the 
scattering cross section is only u0 "" 10-24 cm2• 

For every scattering event there will thus be a 
very large number of neutron capture events lead­
ing to a strong absorption of the neutron wave. 
Since the mean free path of the neutron with re­
spect to capture is equal to 10 "" (p0u0 )-1 ""10-3 em, 
the neutrons will be scattered primarily in the 
surface layer of the He3, the effective thickness 
of which is ""1o-3 em. Moreover, one must con­
sider the fact that the liquid He3 will be heated up 
as a consequence of the nuclear reactions caused 
by the capture of the neutrons (this energy amounts 
to 5 x 105 ev per captured neutron, which means 
that 1015 He3 nuclei will be heated up by 1 °K for 
every scattering event). All these complications 
make the investigation of the scattering of slow 
neutrons in liquid He3 very difficult. One may 
hope, however, that it will be possible to carry 
out such experiments as time goes on. 

The authors are grateful to L. D. Landau, S. V. 
Peletminskii, and L. P. Pitaevskii for useful com­
ments. 
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