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The problem treated is that of the effect of a strong monochromatic electromagnetic field 
of frequency close to one of the characteristic frequencies of a system on the spectral 
composition of the radiation. The dielectric permittivity of the medium in the presence 
of the field is calculated. 

l. The effect of an external electromagnetic field 
on the macroscopic characteristics of a medium 
has been treated in many papers. Karplus and 
Schwinger, Ul and also Basov and Prokhorov, [2] 

have calculated the absorption coefficient and the 
dielectric permittivity at the frequency of the ap
plied field as affected by the change of the popu
lations of the levels that is produced by the field 
(the "saturation effect" ) . A number of authors [a-sJ 
have treated the change of shape of the spectral 
lines associated with one of the levels i or k when 
the system is in a field of frequency w close to 
Wik· In particular it has been shown that at large 
amplitudes of the field the probability that the sys
tem is in the levels i and k oscillates with time. This 
leads to a splitting of the spectral lines associated 
with the levels i and k. In these papers, however, 
there was no study of the shape of the line of the 
transition i - k itself in the presence of a field 
with w ~ Wik· Precisely this problem is the main 
one treated in the present paper. 

As is well known, the necessity of taking induced 
transitions into account arises in systems with an 
inverted population of the levels. There has re
cently been special interest in systems with tran
sitions that lie in the infrared and optical regions 
of the spectrum. [7- 91 Here conditions arise which 
differ in a number of important respects from 
those in the microwave region. Namely, in all 
methods that have been proposed the inversion of 
the populations is produced owing to excitation with 
a broad spectrum (radiationless transitions,[7• 9- 17l 

or optical excitation by means of radiation with a 
broad spectral composition[7• 81 ). This means that 
the model of a monochromatic field used in [a-S] 

to describe the excitation of the system does not 
correspond to the actual conditions. 

The second important difference is that the life
times of the levels considered are usually quite 
different. In the case of gaseous systems, for ex
ample, at small densities the lifetimes of the ex
cited states are determined by spontaneous tran
sitions, which have different probabilities for the 
different levels. In crystals the lifetime of the 
upper state can be determined by a spontaneous 
transition and that of the lower state by radiation
less transitions or, for ·the ground state, by the 
probability of excitation. Moreover, as the result 
of various elastic processes the line widths may 
not correspond to the decay probabilities ( Dop
pler effect, Weisskopf broadening mechanism, in
homogeneity of the crystal, etc.). 

All of these circumstances must be included 
in the treatment. At first, however, we shall con
sider radiative processes, and shall take into ac
count all the other causes of line broadening later 
on. 

2. Let us consider an atom 1> with nondegenerate 
levels E3 > E2 > E1, Ej, Em. It is obvious that the 
production of an inverted population of the levels 
E 3, E2 is possible only if the probability 2y2 of 
decay of level 2 is larger (in practice, much 
larger) than the probability 2y32 of the sponta
neous transition 3- 2. Therefore our further 
calculation is made under the condition 

Ya2 ~ Y2· 

There is no restriction on the decay probability 
2y3 of level 3. 

We shall assume that the atom is in a strong 
electromagnetic field of frequency WA. ~ w32 

(1) 

'For definiteness we shall speak of an atom, although all 
of the further treatment applies to any quantized system. 

328 



DISPERSION IN THE VICINITY OF AN ABSORPTION BAND 329 

= ( E3 - E2 )/ti and a weak field with a continuous 
spectrum, which must be considered for the cal
culation of the induced emission and absorption 
at frequencies WA_, w f.1." At the initial time t = 0 
let the atom be in level 3 and let there be in the 
radiation field nA_, nJ.l. photons with frequencies 
WA_, wf.l." As the result of the interaction with the 
field there can be various transitions accompanied 
by emission and absorption of photons WA_, w W 
We shall denote the probability amplitudes of the 
states of the system "atom +field" by 
a(3,nA_,nJ.l.), a(2,nA_+1,nJ.l.), etc. WhenEq.(1) 
holds and nJ.l. is small we can take into account 
only the transitions shown in Fig. 1. In fact, under 
these conditions the probability amplitudes of the 
states formed through the emission and absorption 
ofphotons wJ.l. [i.e., a(3,nA_-1,nJ.l-+1), a(2,nA_, 
nJ.l-+1), a(3, nA.+1, nJ.l--1), a(2, nA_+2, nJ.l.-1)] 
are small in comparison with a ( 3, nA., nJ.l.) and 
a ( 2, nA. + 1, nJ.l.). Therefore transitions of types 

2, n~., np. + 1--+3, n1,, np. + 1, np.•-1; 
3, n1. -1, n~'- + 1 --+2, n~. -1, nfL + 1, np.' + 1 etc. 

from these four states can be neglected. We note 
that the transition 

2, n~. + 1, np.-"' 3, n~. + 1, np. - 1 

must be taken into account, since for large nA. 2> 

the probability of this process is comparable with 
the probability of induced emission with the tran
sition 3, nA., n]J.- 2, nA., nJ.l. + 1. 

Within the framework of this approximation the 
system of perturbation-theory equations for the 
probability amplitudes a (3, nA., nJ.l.)' a (2, nA. +1, 
nJ.l.), . . . can be integrated for arbitrary values of 
nA.. The exact solutions of the system, valid for 
arbitrary t, are of the form 

FIG. 1. Scheme of transitions. The wavy arrows denote 
spontaneous transitions to all lower levels. 

Here we have introduced the following notations: 

the coefficients c 32A. and c 32 J.l. are connected with 
the matrix elements of the interaction Hamiltonian: 

A1 and A2 are constants of integration, which can 
be determined from the initial conditions; the func
tions cp 11, cp 12 , cp 21, cp 22 are given by 

exp {[i (QfL -- !2,) __;_ ai] I)- exp {ail) 

Cjlij = i (QfL- Q!) + ai- ai 
(i, j = 1, 2); (3) 

and finally, a 1 and a 2 are the roots of the charac
teristic equation: 

al.2 = i61.2- r1,2 =- ~ Q), - + (rz + 13) 

where NA. is the total number of photons of fre
quency WA_ in unit VOlume, and 61, 62, - r 1• - r 2 

are the real and imaginary parts of a 1 and a 2• 

The formulas (1) - (4) enable us to obtain all 

(4) 

needed characteristics of the radiation in the tran-
c;2~'- Vi + nfL c32!. vn;: 1 A sition of the atom from an excited state. --"""=---"'---'"'----- {A, [rJln -cp,2 + 2 [IJY2r -cpd}, 

Cl.t- Cl2 

a (2, n,, np. + I) 

. c;2 ~' V 1 + n!J. [ I 
= - i {Ar (ar + j3) cpn- (cx2 + j'3) cp12 

ctl- (12 

+A2 [(ar + ra) cp21- (cx2 + 1'3) cp22l}em1.t, 

(.3 + l _ 1) = _ c32fL vn;: c;2 ~. Vfl;: tX , n~. , np. a,_ a 2 

{A [<c _Ill+ Ia m J 1 A [a2 +12m _en ]} /(0.).-0p)l 
X 1 -.11 a 2 + Ia -r21 T 2 a, + Ia -r12 -r22 • 

2If n "A is sufficiently large, the probability of induced 
transitions exceeds the probability of spontaneous transitions 
and the populations of levels 3 and 2 are of the same order of 
magnitude. 

3. With a(3, nA_, nJ.l.) as an example, let us in
vestigate the special features of the solutions that 
can arise for various relations between y 2, y 3, and 
NA.. For simplicity let us consider the case of 
greatest practical interest, that of exact resonance, 
that is, the case in which the frequency of the ex
ternal field coincides with that of the transition 
(QA. = 0). For NA.- 0 we have a1 = -y2, G¥2 

= - y 3, and Eq. (2) goes over into the well known 
solution of the problem of the purely spontaneous · 
transition of the atom to the ground state. As NA. 
increases the roots a 1, a 2 at first remain real 
and negative: 
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1 "If (5) 
- iXI,2 = rl.2 = 2(r2 + ra) ±I' (r2-ra)2 /4- G2. 

Under this condition 
a (3, n,, np.) 12 = I Ale-r,t + A2e-r,t 12 

decreases monotonically with the time. The com
plexity of the damping curve is physically due to 
the ''mixing'' of the states 2 and 3 of the atom 
owing to the interaction with the field. For small 
G2/(y2 -y3)2 we have 

fz = ra + G2/(r2- ra). (6) 

that is, we can suppose that the induced transi
tions act along with the spontaneous transitions 
in changing the lifetime. With further increase 
of G2' however' it turns out that the induced and 
spontaneous transitions are quite different from 
this point of view. 

For G2 = (y2-y3)2/4 we have a 1 2 
=- (y2 + y 3)/2; that is, y 2 and y 3 h~ve equal 
effects in determining the transition from the ex
cited state. If y 2 > y 3, as is so in the majority of 
cases, the decay occurs more rapidly than for G 
= 0. If, on the other hand, y 2 < y 3, there is a 
lengthening of the lifetime. 

When the external field is still stronger the 
radical becomes imaginary, and the real part no 
longer depends on the field: 

a1.2=-+<rz +ra)± iJ/OZ-(rz-ra)2/4, (7) 

and the time dependence of I a ( 3, nA., nJ..t) 12 takes 
on the character of damped oscillations: 

\a (3, n", np.) 12 =A cos2 IM +'¢1 e-(y,+r,lt, 

62 = G2 - (rz - ra)2/4. (8) 

We note that for y2 = y 3, i.e., in the only case 
considered in the papers cited earlier, £3- 61 the 
oscillatory behavior begins at once at the smallest 
values of NA.. At the same time, as will be shown 
below, a considerable saturation can be attained 
even in the "aperiodic case" of Eq. (5), if y2 » y 3• 

Since the character of the solutions is deter
mined by the sign of the radicand, the features we 
have noted will also appear in the other functions 
of Eq. (2). 

4. In many cases the excitation is selective 
(for example, optical excitation), arid we can as
sume that at the initial time t = 0 the atom is in 
the level 3. Then 

A1 = - (az + ra)/(al - az), 

Az = (a1 + rs)/(a1 - az). (9) 

In the opposite case it is necessary to use also the 
solution under the initial condition a ( 2, nA. + 1, nJ..t) 
= 1 for t = 0, for which solution 

A1 = - Az =- ic32" Jl n" I (a1- az). (10) 

The analysis here will be for the practically most 
interesting case, that of Eq. (9). 

Let us consider the probability WA. of induced 
emission of a photon of frequency WA_, and the in
tegrated probability3> W J..t of spontaneous emission 
in the transition 3- 2. Calculations by the usual 
rules, by means of Eq. (2), lead to the following 
expressions: 

W~c = lz + I• az 
I• Q~ + (lz + 1•)2 + a• (lz+ 1•)2 /izla' 

W ~'- = laz Q~ + (lz + la)2 + a• (lz + Ia) I lz . (ll) 
Ia Q~ + (lz + la)2 + a• (lz + la)2 I lzla 

The dependence of WA. and W J..t on G2/y2y 3 is 
shown in Fig. 2. For small NA. the probability of 
induced emission increases in proportion to NA_, 
and thereafter it reaches a limiting value ( satu
ration effect) 

WA = r2/ (rz + rs), N~c ~ M = (wizlmB) rzra/raz. (12) 

If Y2 » Y3• then y 2/(y2 + y 3)"' 1, i.e., practically 
every act of excitation leads to the induced emis
sion of a photon of the frequency of the external 
field. 

0 2 4 6 8 fO 

FIG. 2. Integrated probabilities of emission. 

In Eq. (12) the quantity N~ obviously gives the 
number of photons per em 3 for which WA. reaches 
about half of its limiting value. Besides the well 
known dependence on the frequency ("' w~2 ) we 
must also note that the larger the value of y 2y 3/y32 
the greater the field intensity required to give satu
ration. The value of the parameter G2 that corre
sponds to N~ is Y2Y3· 

The integrated probability of spontaneous emis
sion falls with increasing NA_, and the larger the 
value of y 2 /y3 the larger is the amount by which 
this probability decreases (Fig. 2): 

W~'- = rsz/ra (N~c ~ N~), 

Wp. = raz/ (rz + ra) (N~c ~ M.). (13) 

'The term probability is used here in denoting two differ
ent quantities: the transition probability per unit time (the 
Einstein coefficient 2yik), and the probability of emission of 
a photon (W'N Wp.), which is identical with the ordinary con
cept of probability. 
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Thus as NA. is increased there is a redistribu
tion of the probabilities of the decay of the excited 
state between the two channels, one of which is the 
induced transition 3, nA_, nJ-1. - 2, nA_ + 1, nJ-1., and the 
other the spontaneous transition 3, nA., nJ-1.- 2, nA., 
nJ-1. + 1. In the generators in the short-wave region 
that are described at the present time, y 2 » y 3, 

and with sufficiently powerful excitation these 
changes in the integrated probabilities should be 
observed. 

5. As has already been pointed out, the transi
tions induced by the field cause changes of the 
spectral composition of the spontaneous radiation 
and of the shape of the absorption line. For the 
case in which Eq. (7) holds the cause of the change 
in the line shape is obvious: the probability of 
finding the atom in the excited states oscillates 
with the time, and it is easy to see that this leads 
to a splitting of the line. In the "aperiodic case" 
of Eq. (5) there are no oscillations, but the ampli
tudes of the different states of the system "atom 
+ field" fall off with different damping constants 
r 1 and r 2• which also leads to a change of the 
shapes of the emission and absorption lines. 

The spectral density (in the frequency scale) 
w JJ. of the probability of spontaneous emission of 
a photon can be put in the form 

co~ I A1 A 2 12 W = ls•l• 
~'- n 2 I ct1 - ct2 12 • x + Ql'- - ict1 - x --r- Ql'- - ict2 

-co 

x{l ctl+ls - ctz+la 12 

X -t- Q 1, - i:x1 X+ Ql. - ictz 

-+- .}!_ Q21 1 - 1 12} d (14) 
'lz x+Q1,-ictl x+Q~.--ict2 X. 

It can be seen from this that w J-1. will contain reso
nance terms with denominators of the forms 

(QI'- - Q,) 2 + 4fi, (QI'- - [h) 2 + 4[~, 
(Q~'- + 261)2 + (f1 + r2r. (Q~'- + 262)2 + (f1 + rz)2 • (15) 

The coefficients of these terms, which depend on 
61 2, r 1 2, and QA., can be calculated by integrating 
Eq. (14)'. The general formulas for the coefficients 
are very cumbersome, however, and we shall not 
give them, but shall confine ourselves to a quali-

FIG. 3. Spectral density of the probability of 
spontaneous emission (in units y,2/rry3(y2 + y,). 
Case a is for y, = y,2 = 0.1 y2 ; curve 1 is for G = 0, 
curve 2 G2 = 0.04 y;, curve 3 for G2 = 0.08 y~, and 
curve 4 for G2 = (y2 - y,)2 / 4. Case b is for y3 = y2 ; 

curve 1 is for G2 = 4 y; and curve 2 for G2 = 9 y;. 

tative analysis of the line shape and numerical 
illustrations. 

Let us first consider the case QA. = wA. - w32 = 0, 
in which the line is symmetrical with respect to 
QJ-1. = wJ-1.- w32 = 0. If the inducing field is not too 
large, so that G2 < (y2 -y3 ) 2/4, then 61 = 62 = 0, 
and r 1 ;e r 2 are determined by Eq. (5), from 
which it can be seen that r 1 > r 2• Consequently, 
2r 1 > r 1 + r 2 > 2r 2• and of the four terms listed 
in Eq. (15) the one that decreases most sharply 
with increase of QJ-1. is the term with r 2• It can 
be shown that the coefficient of this term is nega
tive and increases in absolute value with increas
ing G. Therefore the general picture of the change 
of the line shape reduces to the following (Fig. 3, a): 
for G2 « (y2 -y3 ) 2/4 there is an ordinary line of 
the dispersion shape with width y2 + y 3 and inte
grated emission probability y32 /y2 (curve 1); as 
G increases a minimum appears in the center of 
the line (curves 2 - 4), and remains right up to 
the value G2 = (y2 -y3 ) 2/4. 

Further increase of the external field leads to 
the appearance of imaginary parts 61, 2, and for 
QA. = 0 we have 

f1 = f2=(rz+ra) I 2, 

61 = - 62 = Jl G2 - (rz- ra) 2/4. (16) 

Consequently, the emission line in this case con
sists of three components with equal widths y 2 + y 3, 

separated from each other by distances 261• The 
splittirtg of the line becomes detectable, however, 
only for 61 ~ y 2 + y 3, i.e., for 

(17) 

Different values of G are required, depending 
on the value of ydy3, but in any case the splitting 
of the line will be appreciable only when there is 
comparatively strong saturation, i.e., for G2 » y 2y 3• 

Thus from the very start of the splitting the inte
grated intensity of the line is practically unchanged, 
and as G increases its two equal components move 
farther and farther apart. This can be seen well 
in curves 1 and 2 of Fig. 3, b. The former case 
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corresponds to Nl\ = 4N~, the latter to Nl\ = 9N~. 
We note, finally, that at the indicated values of the 
field the oscillations of a ( 3, n/\, nil) are still very 
strongly damped; in the former case the mean life
time 1/ ( y 2 + y 3) of an atom in level 3 is about % 
of the period of oscillation, and in the latter case 
it is % of the period. 

With departure from resonance ( QA. "' 0) the 
line becomes extremely asymmetrical: the maxi
mum of one of the side components approaches 
wa2, and its magnitude increases sharply. At the 
same time the other two terms become smaller 
and the positions of their maxima go farther from 

W32· 
Let us turn to the transitions induced by a weak 

field. For the initial conditions (9) the induced 
emission coefficient kll (dimensions em -1) is 
given by4> 

- , . dx, 1 \2} 
x--rQ;>. -lC!z 

(18) 

where Q is the number of acts of excitation per 
unit volume and unit time. For the initial condi
tions (10) the formula for kll differs from Eq. (18) 
by a change of sign and replacement of y 2 by y3 
in the coefficient of the integral. 

For G2 < (y2 -y3)2/4 thenatureofthechange 
of the frequency dependence of kll is approxi
mately the same as for the spontaneous emission 
line (Fig. 4, a). In the case G2 > (y2 -y3)2/4, on 
the other hand, there is a decided difference be
tween kll and w ll: for sufficiently large G, kll is 
negative in a certain range of frequencies, i.e., 
there is absorption of a weak field of these fre
quencies (curves 3 and 4 in Fig. 4, b). 

An interesting property of kll is that for w ll 
- WA. it is not equal to the absorption coefficient 
for a strong field, k/\ = 1\ 2QWA. I 4NI\; k/\ is always 
larger than kll, as can be seen from Fig. 4, where 
kll/kA. is plotted as the ordinate. We note that the 
discontinuity of the emission coefficient is of great 
importance for understanding the operation of 
quantum generators. 

4 The formula (18) is for the case of a gas and kJLA « 1. 
By using the results of Ginzburg[18] one can easily extend the 
formula to the case of a medium with E =F 1 and small kJLA.. 
This comment also applies to the subsequent formulas for the 
dielectric permittivity. 

a 

FIG. 4. Emission coefficient kJL. Case a is for y3 = y32 

= 0.1 y2 ; curve 1 is for G2 = 0, curve 2 G2 = 0.08 y;, curve 3 
for G2 = (y2 - y3 ) 2 I 4. Case b is for y3 = y2 ; curve 1 is for G2 

= 0.2, curve 2 for G2 = 4 y;, and curve 3 for G2 = 9 y;. 

In a number of problems arising in the analysis 
of devices with negative resistance it is necessary 
to know the complex dielectric constant E = E' + iE" 
of the medium. The imaginary part of E is deter
mined from the emission coefficient (for kill\ « 1, 
cf. footnote 4>) 

e" ( m1") = - (A/2rt) k1". (19) 

For w ll "' wl\ the real part of E can be found by 
means of the Kramers-Kronig formula:[ 19J 

dx. (20) 

Curves of E' - 1 for the cases considered above 
are shown in Fig. 5, a for w ll > w 32 [ E' ( Q ll) - 1 
= - E' (- Qll) + 1]. Like the emission coefficient, 
E' - 1 decreases in absolute value with increase 
of G. For G2 < (y2-y3)2/4 (Fig.5,a)wenotethe 
fact that near w32 the dispersion is positive and 
E'- 1 is zero at three points. For y2 = y3 and 
comparatively small G2 there is negative disper
sion (curves 1, 2 of Fig. 5, b). For sufficiently 
large G2, when the splitting of the spontaneous 
emission line is appreciable, E' - 1 goes to zero 
at five points, and near w32 the dispersion is still 
negative. 

The dielectric permittivity at the frequency WA. 
must be determined separately because of the dis
continuity at the point WA.. Calculating the energy 
of the interaction of the atom with the field by 
means of perturbed wave functions, we arrive at 
the following formulas: 
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a 
E'·f 

F'-1 

FIG. S. Real part of the dielectric permittivity [in 
units y ,\3Q/8112 (y3 + y2)']. Case a is for y, = y32 = 0.1 Y2; 

32 2 

curve 1 is for G2 = 0.04 y:, curve 2 for G2 = 0.08 y2 , and curve 
3 for G2 = 0.14 y:. Case b is for y, = y2 ; curve 1 for G2 = 0, 
curve 2 for G2 = 4 y:, and curve 3 for G2 = 9 y:. 
If y 2 = y 3, Eq. (21) agrees with the formulas of 
Basov and Prokhorov[2l if we set 2y2 = 1/T, where 
T is the lifetime of the excited state. 

In conclusion let us consider the extension of 
the formulas we have given to cases in which the 
widths of the levels are not due to spontaneous 
transitions only. Here we must distinguish be
tween elastic and inelastic processes. If all in
elastic processes, including also spontaneous 
transitions, lead to lifetimes T 2 and T 3 for levels 
2 and 3, then in all of the formulas we must set 
2y2 = 1/T2, 2y3 = 1/T3• Elastic processes (Doppler 
effect, inhomogeneity of the medium) lead to broad
ening of the lines on account of changes of the fre
quency w32 of the transition. Since w32 is involved 
in a 1, a 2, A1, A2, we must average the quantity in 
question over the possible values of w32 with ap
propriate weights. For example, if the probability 
distribution for the various values of w32 is of the 
form 

/:,. V/Jt 
'1\1 ( Ws2) = ----=-'---,---:

(ws2- Ws2)2 + (l:ivf 

the probability of induced emission is 
00 

w). = ~ WA'I\J (w32) dw32 
-00 

D.v + (i2 +is) fl -'- G'/i2i3 G2 

(22) 

i 3 Y 1 + G2/''f213 Qt + [D.v + (i2 +is) Vi +G2/i21'3 F' 

(23) 

In particular, it can be seen from Eq. (23) that for 
A.v » y2 + y 3 the degree of saturation is determined 
by the parameter G (y2 + y 3)/[6.v (y2y 3)1f2 ], which 
involves the characteristics of both the elastic and 
the inelastic processes. 
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