
SOVIET PHYSICS JETP VOLUME 14, NUMBER 2 FEBRUARY, 1962 

EFFECT OF ROTATION ON PAIR CORRELATION IN NUCLEI 

Yu. T. GRIN' 

Submitted to JETP editor February 4, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 445-450 (August, 1961) 

Corrections are determined to the quantity A characterizing the pair correlation, in the 
second order of perturbation theory in the rotation. Corrections are estimated to the rota­
tion spectrum, arising from the dependence of A and consequently of the moment of inertia 
on the nuclear spin. 

IT is well known that a magnetic field reduces the 
magnitude of the energy gap 2A in a superconduc­
tor. Since a magnetic field is equivalent to a rota­
tion, the rotation of a system of "paired" particles 
will also lead to this same effect. The reduction of 
A results in an increase in the moment of ine1 tia. 
Since the change of A depends on the rate of rota­
tion or the spin I of the system, this will lead to 
corrections to the moment of inertia which are 
proportional to I (I+ 1) and consequently to cor­
rections to the energy proportional to I2 (I+ 1 ) 2• 

The calculation of the change in A is conven­
iently done by the method of Gor'kov and Migdal,U1 

using the equation for the Green's function. In the 
present paper we shall find the diagonal corrections 
to the solutions of the Gor'kov equation in the sec­
ond order of perturbation theory and find the de­
pendence of A on I. Using the dependence A (I) 
thus found, we can estimate the corrections to the 
energy of the rotating system proportional to 
I2(1 + 1 )2. 

We shall write these equations for the Green's 
functions 

G (Xl, X2) = - i <T [1jJ (Xl) 1jJ+ (X2) ]), 

F =- i <T [1JJ+ (x1) 1jJ+ (X2}l> exp (- i2rtl) 

in the usual form 

(ia!at- H) G- ii::J.F = 6 (n- r2), 

(ia/8t + H* - 211) F + i!::J.*G = 0, (1) 

where lf! (x) and 1/J+(x) are the operators for anni­
hilation and creation of particles, J.l is the chemical 
potential, and A is a quantity characterizing the 
pair correlation. The quantity A is found from 
the equation 

/::,. = r ~ F* (r, r, w) ~:. (2) 
c 

Here F ( r, r, w) is the time Fourier component of 
the function F, y is the interaction constant of the 
particles, while the contour C consists of the real 

axis and the infinite semicircle in the upper half 
plane. 

The total Hamiltonian of the system of particles 
has the form 

where H is the Hamiltonian of the nucleus in the 
rotating system, MX is the angular momentum 
along the x axis, coinciding with the axis of rota­
tion, and n is the angular velocity. 

Treating the term Mxn as a perturbation, it is 
easy to calculate the diagonal corrections (which 
are the only ones we are interested in for what 
follows ) in the second order of perturbation the­
ory in the functions G and F. For the case where 
the functions G and F are expanded in eigenfunc­
tions of the Hamiltonian H0, these corrections 
have the form 

G~A = 2J {H;.A,H~,A IGAGA,GA- GJ).,F).- F).D)J).- F).F).,G).l 
A, 

A, 

+ iH~).,tJ.~,).(D).F).,F). +D).D1.,G1. + F).G).,F).- F).F).,G1.) 

+ ii::J.~A,H~,).(FADA.fA + F1.F1.,G). +D1.G1.,G). -DJ1.,F1.) 

- /::,.~l.,!::J.~,A(F).F1.,F1. + F1.D1.,G). +D).G1.,F1.-DJ1.,G1.)} 

+21-1"DJ1. +ii::J."(fl.f).-DAG).). (4) 

Here GA_, FA_, and DA. are given by the formulas 

GA = (E).+ e).) (£).-e).) 
2E). (w-E).+ i6) + 2E). (w +E).- i6) ' 

(5) 
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The equation for determining !::::.." has the form 

!1" (r) = r ~ F~t. (0) <pt. (r) <p~ (r). (6) 
). 

In the present paper we shall be interested in the 
quantity !::::.." averaged over the nuclear volume V: 

~· = ~ ~ !1" (r) dV. 

From formula (6) we then obtain an equation for 
!::::..": 

X"= r ~ F~ (0). (6') 
). 

Using Eqs. (6) and (2) for the unperturbed !::::.., 
we easily find (assuming that !::::.." ( r) depends 
smoothly on r) that 

" -, 1 
2} FA(O) + !1 ~2£ = 0. (7) 
). ). ). 

Using formulas (4) and (5) this equation takes 
the form 

+ /J. (E).E)., +e). e).,+ !J.2)] } 
4 (E"EA)' (Et. + Et.) 3 

+ ~"!12} e\- if"f122}~ = O. 
). 2£). ). 2£). 

The corrections associated with the change in 
the chemical potential J.J." can be calculated from 
the equation 

(8) 

2}G~>-=0. (9) 
). 

Evaluating J.J." from this equation, we can show that 
the corrections to !::::.." resulting from a change in 
the chemical potential will be "' ( t:::../ e: 0 ) 2 ,... A - 4/ 3 

and can be neglected. 
The quantities in square brackets which appear 

in (8) have sharp maxima, as a function of EA. for 
fixed E)l. - E)l.1 = d, of width "' !::::.. at the point E)l. 

+ EA.t' Thus these quantities can be calculated by 
the quasiclassical method developed by Migdal. [1] 

One easily sees, by calculating the elementary in­
tegrals, that the sums in square brackets can be 
replaced by the expressions 

(1 + 2x2) g- 1 
[. · ·h->- 2/J. (1 + x2) fJ (e~.). (10) 

[ x (x2g- 1) 6 (e>,) 
· · ·12 -+ -- 2/J. (1 + x2 ) 

[ (x2g --1) 
· · .Ja->- (1 +x2) fJ(e>.), 

where 

(x) = In I x + Y 1 + x2 1 e"- et. 
g xV1+x2 'X=~ 

(11) 

(12) 

It is easy to calculate the sum in the last term 
in (8) by changing to an integral over E)l.: 

~ 1 Po 
L.J 2£3 = Lr•' 

). ). 

(13) 

where Po is the level density at the Fermi surface. 
As a result, Eq. (8) for !::::.." takes the form 

Ll" = _ ~ {(1 -t2x2)g-1 H' H' 
Po L.J 211 (1 + x2) AI., 1.,>. 

).)., 

x2g-1 · • · · · · } + 2/J. (i + x•) [(HH,f1t.,1.- 11n,Ht.,i.)X + !1n,Lh,t.] fJ (et.). 

(14) 

We shall carry out the further calculations for 
the model of an axially symmetric deformed oscil­
lator. 

In this model the operator _Mx is different from 
zero only for transitions with nx = nx ± 1, nz = nz 
± 1. To quasiclassical accuracy all possible matrix 
elements M~l\ 1 are equal, and the energies of the 
transitions are EA.- E)l.1 = ± ( Wz ± wy). 

In this model, as shown by Migdal, [1] 

A' • IX M• xn 
Ll =- t 2/J. •• , (15) 

where 

while the rigid moment of inertia J 0 is equal to 

Then calculating the sum (14) by using (15) and (16), 
we get 

(17) 

or, abbreviated, 

(17a) 
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Formula (17) supplies the answer to our problem. 
From (17) we see that in order of magnitude t:." It:. 
is equal to the ratio of the rotational energy I ( I+ 1 ) I 
2J to the total pairing energy - p0t:. 2 I 4. The nu­
merical coefficient in the curly brackets is approx­
imately equal to 0.4 for actual deformed nuclei. 
Formula (17) enables us to estimate the change in 
t:. at the point of transition from the superfluid 
state to the normal state. This change is of the 
order of 40%. In fact, at the transition point we 
have the relation 

- PoLW4 + fc (Ic + l)/2J = fc (Ic + l)/2Jo. (18) 

In our qualitative estimates we neglect the slight 
difference in t:. for neutrons and protons, and we 
always write the total density p0• For a more pre­
cise computation it would be necessary to write the 
energy of the pair correlation - p0t:. 2 I 4 separately 
for protons and neutrons. However, this produces 
an insignificant change in the results. 

The critical spin for the transition is equal to 

lc Uc + 1) = PotNJo/2 (Jo -J). (19) 

For angular momenta I < Ic the superconducting 
state will be stable and J < J 0, while for I > Ic the 
normal state of the system is stable, in which t:. 
= 0 and J = J 0• 

In first approximation we shall assume that t:. 
is not changed at the transition point. Then, sub­
stituting (19) in formula (17), we get an estimate 
for the change of t:. at the transition point: 

~; L 
T = (4J/Jo) (1- J/Jo)' 

(20) 

Since JIJ0 :::::%, t:.0lt:.::::::0.4, i.e.,itisonlyin 
first approximation that we can regard the value 
of t:. as being unchanged at the transition point. 

Let us compute Ic on this assumption. To 
quasiclassical accuracy Po= 3AI2E0• The Fermi 
energy of the nucleus is E 0 :::::: 36 Mev, while J I J 0 

= 0.5. The moments of inertia in the region of the 
rare earths are J :::::: 33 Mev-1, while in the region 
of heavy elements J :::::: 72 Mev-1. Estimating Ic 
according to formula (19), we find Ic :::::: 11 for the 
rare earths, while Ic :::::: 17 for the heavy elements. 

Similar estimates of this effect were first made 
by Mottelson. [3l These moments agree with the 
maximum moments observed in experiments on 
Coulomb excitation. [4J 

The observation of rotational states with I > I~ 
by using electromagnetic transitions from states 
with I < Ic will be difficult, since we must then 
excite a state in which t:. = 0 and consequently 
there must occur a marked readjustment of the 
internal state of the nucleus. As we have pointed 

out earlier, [51 in a transition with a marked change 
in t:., a retardation factor 

K = [II (u~u{ + v~v~) r = exp {2 ~In (u~u~ + v~v{)} 
A A 

(21) 
appears, where ui\ = Y2 ( 1 + Ei\ lEi\), Vi\ 
= Y2 ( 1 - Ei\ lEi\), while the superscripts i and f 
denote the initial and final states, in which the 
nucleus has different values of t:.. Assuming, for 
example, that in the final state t:.f = 0, we obtain, 
by changing from summation to integration, 

2 ln_!_(l+ IJ8AJ ) 
2 VD.• + 8~ 

00 

(' 1 ( 8 ) poA(n-2) 
= ~ p0 In 2 \I + V 82 + D.• de = - ~ , 

0 

(22) 

K = exp {- po~ (:n- 2)}. (23) 

Since, when we include the change in t:. for large 
values of I, p 0t:. ( 1r- 2) ~ 5 for the heavy elements 
and~ 4 for the rare earths, K ~ 10-2• 

We can also estimate the corrections to the ro­
tational spectrum of the system, oE == - BI2(I + 1 )2, 

resulting from the change in t:. and the consequent 
change in the moment of inertia. 

As was shown by Migdal, m moments of inertia 
can be described well by the expression J = Cx1, 

where C = const. Then the change in the rota­
tional energy when t:. is changed will be 

bE~ _ liH (I+ 1) "J _ !iH (I+ 1) M (24) 
~ 2J 2 u - 2J 1:!.. 

Substituting for ot:. in (24) from formula (17), we 
get 

bE= - Jo~P~~;;•> J2 (I+ I )2• (25) 

Thus we obtain as an estimate for the coeffi-
cient B 

(26) 

The usual nonadiabatic correction to the rota­
tion spectrum, omitting the pair correlation, was 
calculated previously by us [5J and has the form 
(for a deformation {3 » A -2/3): 

(27) 

Since wof3 ~ t:. ~ EoA - 213, the two corrections 
have just the same order of magnitude with respect 
to A. Numerically estimated coefficients B from 
formula (26) also turn out to be close to the ex­
perimentally observed values. 

For the rare earths 

B th = 25xio-s kev, Bexp = 20xlo-s kev, 
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while for heavy elements 

B th ~ 6xl0-a kev, B exp ~ (3 -5)xio-a kev. 

Thus rotation has a sizable effect on the pairing 
correlation, and this effect must be taken into ac­
count in computing the nonadiabatic corrections 
proportional to I2(I+1) 2• In the case of the esti­
mate of Ic we can neglect the change in ~ only 
in first approximation. However, for more pre­
cise computations this change must be taken into 
account. 

The author expresses his gratitude to V. M. 
Galitskii and A. B. Migdal for interesting discus­
sions. 
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