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With the example of a model which is a relativistic generalization of the models of Ruijgrok­
Van Hove and of Lee, it is shown that the difficulties in the latter model arise from the vio­
lation of the Bloch consistency condition, and not from violation of crossing symmetry. In 
the Lee model a covariant S matrix exists only for vanishing renormalized charge. It is 
found that the Bloch condition in its usual form is too severe. A physical consistency con­
dition is formulated which contains only renormalized quantities. 

l. In recent years much attention has been given 
to the difficulties inherent in the well known Lee 
model (we refer to the vanishing of the renormal­
ized charge, the existence of nonphysical states, 
and so on). The interest in these problems is 
primarily due to the fact that there are definite 
arguments in favor of the existence of analogous 
difficulties also in an actual field theory with a 
point interaction. 

There are, however, serious grounds for think­
ing that the difficulties of the Lee model are spe­
cific to it and not directly related to possible dif­
ficulties of an actual field theory. This is indi­
cated, for example, by the fact that these difficul­
ties disappear if we go over from the Lee model 
to the more realistic model proposed by Ruijgrok 
and Van Hove (cf. (tJ ) . To settle the question 
finally it is desirable to discover the reasons for 
the vanishing of the charge in the Lee model and 
to find out whether these reasons are effective in 
an actual field theory. The present paper is de­
voted to the analysis of this question.* 

In connection with what has been said we must 
note an assumption due to Mandelstam, C2J that the 
difficulties in question are closely connected with 
the violation of the crossing symmetry (c.s.) of 
the theory. t If this assumption should turn out 
to be entirely correct, it would follow that the 

*In this paper we are concerned exclusively with relativis­
tic theories (in particular, with the relativistic Lee model). 
The discussion of nonrelativistic models is of little interest 
in itself, especially since the difficulties are due precisely to 
the relativistic range of momenta. 

tBy c. s. we mean the symmetry of the theory with respect 
to emission and absorption of particles, i.e., with respect to 
the interchanges cp+ :;:::: cp_, and so on, where the indices + and 
- correspqnd to the creation and annihilation parts of the 
operator cp. 

causes of the vanishing of the charge are specific 
features of the Lee model and that there are no 
such difficulties in an actual field theory. The c.s. 
is indeed strongly violated in the Lee model (the 
V particle can only emit a meson, and the N par­
ticle can only absorb one), whereas in an actual 
field theory there is complete symmetry between 
emission and absorption. 

There is, however, no direct proof of Mandel­
starn's assumption. Essentially the only argument 
in its favor is the situation in simple models of 
field theory-the Lee model and the statistical 
scalar model.* If however, we go over to more 
complex models, we can verify (cf. Sec. 2) that 
this assumption is by no means always true and 
does not reflect the true causes of the appearance 
of the difficulties. It is convenient to use for this 
purpose a relativistic model considered by Smol­
yanskii and the writer[1J (hereafter referred to 
as I), which is a generalization of the models of 
Lee and Ruijgrok and Van Hove. It then turns out 
that the theory is free from difficulties even when 
there are some violations of c. s. t 

It is shown in Sec. 3 that the immediate cause 
of the appearance of the difficulties is not the vio­
lation of c.s., but the violation of the Bloch con­
sistency condition. In the light of this last condi­
tion the entire set of available facts receives a 
simple explanation. In particular, the vanishing 
of the charge in the Lee model is simply due to 
the fact that for other values of the charge the 

*Ter-Martirosyan[•] has shown that for these models this 
assumption is valid even outside the framework of the Hamil­
tonian method. 

tOn the other hand, a model is known (cf.[•J) in 
which the renormalized charge vanishes although there is c. s. 
This property is absent, however, in the relativistic generali­
zation of the model. 
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correctly stated problem has no solutions at all. 
In this connection it is important to note that 

for a renormalized theory, in which there is no 
mutually unambiguous correspondence between 
the bare and renormalized charges, the Bloch 
condition in its usual form can be excessively 
severe. This condition must be expressed not in 
terms of the bare quantities, but in terms of the 
renormalized quantities. It may be that the prob­
lem has no solution in any finite order of perturba­
tion theory, but at the same time an exact solution 
exists. Precisely this situation exists in the model 
considered in I (cf. Sec. 4). 

2. At first glance the situation existing in the 
model considered in I corresponds to the Mandel­
starn hypothesis. In fact, setting gN = 0, we arrive 
at the Lee model, in which the difficulties under 
discussion are inherent; at the same time there is 
violation of c.s. as regards the e particles. If, how­
ever, we set gy = gN, then the c.s. of the theory is 
restored, and, as is shown in I, the theory is free 
from difficulties. 

On a more detailed examination, however, facts 
appear that are in contradiction with the hypothe­
sis under discussion. Namely, it turns out that 
the theory is free from difficulties even when 
there are some violations of c.s. 

First, in our model c.s. is radically violated 
with regard to the heavy particles. The usual 
c.s. condition, which requires interchange between 
emission of a particle and absorption of the anti­
particle cannot be satisfied because of the absence 
of antiparticles. Even if one formulates a weak­
ened c.s. condition, assuming simply interchange 
of emission of a particle and its absorption (this 
is possible if we proceed by the law of conserva­
tion of heavy particles, cf. E51), this condition 
also is violated in view of the fact that the process 
e ~ V + N is forbidden. 

Furthermore, in the case of bare charges gy 
and gN which are not equal to each other and to 
zero the theory also does not possess the prop­
erty of c.s., and at the same time is free from 
difficulties. It is true that in this case we always 
have g0y = g0N, so that the renormalized theory 
is crossing-symmetrical. Therefore it could be 
thought that in the Mandelstam hypothesis one 
must be speaking of just the c.s. of the renormal­
ized theory. In this form, however, the hypothe­
sis loses its force. In fact, after charge renor­
malization the Lee model also acquires the prop­
erty of c.s., because g0 = 0. 

Finally, we must recall the model with com­
plex charge, considered at the end of I, which is 
also unsymmetrical with respect to interchange 

of creation and annihilation operators of the e 
particles and has a nonvanishing renormalized 
charge. 

It follows from what has been said that viola~ 
tion of c.s. is not the direct cause of the appear­
ance of the difficulties. It is natural to think that 
these arise when there is at the same time 4 vio­
lation of some more fundamental requirement, 
which must be obeyed by every internally con­
sistent field theory. It turns out that this require­
ment is the Bloch consistency condition. 

3. A theory in which c.s. is violated is essen­
tially a nonlocal theory. In fact, the Hamiltonian 
of the model under consideration (for notations 
see I) 

H (x) = \il (x) (o+cp+ (x) + ::;_cp_ (x)) 'ljJ (x) (1) 

can be written in the typically nonlocal form 

H (x) = \il (x) ~ d£F (x- £) cp (£) 'ljJ (x). 

The Fourier transform of the form-factor F is 
of the form 

F (k) = ::;+f:J+ (k)--'- ::;_8_ (k), 

where cp = cp + + cp_ , and e ± are step functions 
which accomplish the projection onto the positive 
and negative frequency ranges. 

If the interaction Hamiltonian is nonlocal, the 
question arises sharply as to whether the consist­
ency conditions are satisfied, i.e., as to whether 
the S matrix exists as a definite function of the 
spacelike surface a. In the case in which the 
Hamiltonian does not depend explicitly on this 
surface the condition has the well known form 

[H (x), H (x')] = 0, (2) 

where the points x and x' lie on a, i.e., are sepa­
rated by a spacelike interval. 

We shall show that in the model under consider­
ation the vanishing of the renormalized charge oc­
curs when and only when the condition (2) is vio­
lated (for a somewhat sharper form of this condi­
tion see Sec. 4). It is easy to understand this 
statement if we take account of the fact that a 
theory with the charge equal to zero satisfies 
Eq. (2) identically. Therefore under the indicated 
conditions no other solutions are possible. 

First we note that in the model in question the 
fermions have no antiparticles. Therefore the 
creation and annihilation operators taken sepa­
rately (and not their sum, as for Dirac particles) 
anticommute outside the light cone. The corre­
sponding anticommutator 
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where ~ = x- x', vanishes for ~ 2 > ~~. in virtue 
pf u~ > u2• It is clear that the corresponding vio­
lation of c.s. does not prevent the condition (2) 
from holding, in complete agreement with what 
was said in Sec. 2 and with the assertion just 
made. 

Using these anticommutation rules for 1/J and 
substituting Eq. (1) in Eq. (2), we get 

[H (x) H (x')J =is+ (x) s_ (x') ~+ (x- x') 

+ is_ (x) s+ (x') ~- (x- x'). 

Here s±(x) =~(x)a±I/J(x), and~± are the well 
known commutator functions. Replacing them by 
the functions ~ = ~+ + ~-• ~1 = i (~+ -~- ), only 
the first of which vanishes outside the light cone, 
we arrive at a condition equivalent to Eq. (2) 

s+ (x) s_ (x')- s_ (x) s+ (x') = 0. (3) 

It is well known that this condition holds for a 
theory with crossing symmetry because s+ = s_, 
but this condition is less severe than the condition 
of c.s. 

In particular, for a model with complex charge, 
where 

the condition (3) is satisfied identically, and this 
is also in agreement with the present assertion. 

The third case of violation of c.s. mentioned 
in Section 2-that in which the charges gy and gN 
are unequal-will be discussed in the next section. 

If there is strong enough violation of c.s., the 
condition (3) may not be satisfied. In this case, 
according to our assertion, the theory must con­
tain difficulties. This situation occurs in the Lee 
model,* where 

The left member of Eq. (3) now has the form 
g2 [A (x, x') -A (x', x)], where 

A (x, x') = 'iiN (x) 'ilv (x') 'ljlv (x) 'ljJN (x') 

and for it to vanish it is necessary that g = 0. 
From this it is clear that the renormalized charge 
must also be zero, 

!Jo = 0. (4) 

Thus the compatibility condition enables us to 
determine the value of the renormalized charge 
without making dynamical calculations. In the 
general case of charges gy and gN which are 
not zero this condition gives 

*The fact that the Bloch condition is not satisfied in the 
Lee model has been noted previously. [•] 

(5') 

from which it follows by considerations of symme­
try that 

(5") 

Precisely this relation is obtained by direct calcu­
lation (cf. I). If we violate the relation (5"), the 
corresponding bare charges turn out to be complex, 
and we have all of the difficulties that come from 
this. [7] This situation is also in agreement with 
the statement made earlier. 

The only problem that remains unsettled is con­
nected with the relation (5'), which at first glance 
contradicts the statement in question. In actual 
fact, as was noted in Sec. 2, the theory is free 
from difficulties even for charges gy and gN 
which are not equal to each other (and to zero). 
It turns out, however, that the condition (2) is in 
certain ways too severe. 

4. Let us first look into the properties of the S 
matrix of the model under consideration in the case 
gy ¢ gN. Because of the violation of the condition 
(2) the S matrix does not exist at all in the infinite­
time representation of Tom onaga and Schwinger. 
We emphasize that for the time being the discus­
sion is being conducted in the language of bare 
charges, which corresponds to the treatment of 
the unrenormalized theory. 

When one uses the usual one-time formalism 
the violation of the compatibility condition mani­
fests itself in the fact that violations of causality 
and of relativistic invariance arise at once. The 
point is that the expression for the S matrix in­
volves retarded commutators of the type (} ( x - x' )x 
[ H ( x) H ( x')] . Since this commutator does not 
vanish outside of the light cone because of the 
presence of the function ~1 (see above), and the 
function (} has an invariant meaning only inside 
the cone, a violation of the two conditions that 
have been indicated is inevitable. Thus the terms 
in the expansion of the S matrix can be divided 
into two classes. The first includes those that 
contain only the function ~; terms of the second 
class contain also the function ~1 and thus con­
tradict the conditions of causality and of relativ­
istic invariance. 

If, however, we analyze the structure of the 
terms of the second class, it turns out that their 
dependence on gy and gN is of a very specific 
type. In the lowest order of perturbation theory 
the matrix element in question depends on the 
combination g\_,- g~ (for gy = gN this element 
must vanish). If now we sum all of the reducible 
diagrams of higher orders that correspond to this 
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matrix element, then after the renormalization 
is carried out the combination just mentioned goes 
over into the difference of the squares of the re­
normalized charges, g~V- g~N· This fact is closely 
connected with the renormalizability of the model 
under consideration, which was already noted in 
the first papers on the Ruijgrok-Van Hove model 
(cf. [7J). 

But the equation g5v- g5N = 0 holds for any value 
of gv and gN (cf. I). Therefore after renormali­
zation the exact solution for the S matrix has an 
acceptable structure because of the actual vanish­
ing of the terms of the second class. Returning to 
the infinite-time formalism, we can say that in this 
case the renormalized S matrix exists in spite of 
the violation of the condition (2). 

It is important to emphasize that the vanishing 
of the terms of the second class occurs only in the 
exact solution; if we confine ourselves to terms of 
a finite order in gv and gN, the combination in 
question by no means vanishes. What has been 
said can be illustrated by the impossibility of the 
inverse expansion of the renormalized expression 
in terms of the bare constants, because of the 
nonanalytic behavior of the relation g0v = g0N 
= (g~N )1/2 (cf. I). 

Thus the consistency condition in its usual form 
is in fact too severe. It requires the existence (in 
the one-time formalism, the causality and relativ­
istic invariance) of each term of the expansion of 
the S matrix in terms of the bare coupling con­
stants. This requirement is excessive, and, more·­
over, unphysical. The physical compatibility con­
dition must be formulated in the language of the 
renormalized quantities only (see below). 

Thus even if the original Hamiltonian does not 
satisfy the condition (2), there is a certain possi­
bility for the theory to be "self-perfecting." For 
example, in the model considered just now the ra­
diative corrections, which are different for each 
of the vertex parts, lead finally to the restoration 
of consistence. 

This situation is possible owing to two circum­
stances. First, it is important that there is no re­
ciprocally unique correspondence between the bare 
and renormalized charges. Whereas the region of 
variation of the bare charges is the plane ( gv, gN), 
the region of variation of the renormalized charges 
(the so called normal zone ) degenerates into the 
line g0v = goN· In the Lee model there is an analo­
gous degeneration of the line g into the point g0 

= 0. Therefore to a given value of the renormal­
ized charge there corresponds a whole set of val­
ues of the bare charge. The degeneration of the 
normal zone, without which, by the way, the diffi-

culties discussed in this paper are themselves im­
possible, is due to the great effect of virtual quanta 
of high energies.* 

Second, it is important that the theory is renor­
malizable. This means that there exists a separa­
tion of the Lagrangian into free and interaction 
Lagrangians, different from the ordinary separa­
tion, and such that the bare quantities disappear 
from the theory; their place is taken by the renor­
malized charge and mass. [8l The corresponding 
S matrix is finite and contains only the renormal­
ized quantities. 

It is natural to take the physical consistency 
condition to be the condition of the existence of 
such a renormalized S matrix. This condition 
is hard to write in a closed mathematical form 
because of the presence of derivatives in the new 
interaction Lagrangian (cf. [8l). Nevertheless we 
can assert that all of the cases considered above, 
including the case gv = gN, are in accordance 
with this new condition. It is enough to note that 
this condition is equivalent to the requirement of 
causality and relativistic invariance, in the sense 
that has been indicated, for the S matrix written 
in the one-time formalism. 

In conclusion we emphasize once more that in 
view of the complete equivalence of two theories 
that differ only in the values of the bare coupling 
constants but not in the values of the renormal­
ized constants, the question raised at the end of 
Sec. 3 is completely disposed of. 

5. The analysis made here thus shows that in 
the framework of the model considered the renor­
malized charge goes to zero only when the exist­
ence of a covariant. S matrix is impossible with 
any other value of the charge. Of course we can 
still not conclude from this that there are no other 
causes for the vanishing of the renormalized 
charge. 

In any case we can state that the cause that 
leads to the difficulties in the Lee model is with­
out force in a real field theory (the corresponding 
Hamiltonian satisfies the consistency condition). 
Therefore the situation in the Lee model provides 
no additional arguments for solving the problem 
of the difficulties of a real field theory. 

I express my deep gratitude to I. E. Tamm for 
his interest in this work and to E. S. Fradkin for 
numerous discussions. 

*If the contribution of these quanta is small, the assertion 
of the preceding section (and also the Mandelstam hypothesis) 
loses its force. This applies in particular to the Lee model 
with a form-factor, and also to the model with a nonrelati­
vistic dispersion law of the nucleons. [•] 
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