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Expressions are derived for the mean counting rate, mean counting rate loss, and disper
sions of the recorded and suppressed counts for different relations between the dead time 
and the pulse duration and repetition rate. Errors due to the dead time are found to de
pend greatly on the relations between these quantities. The derived formulas can be used 
to compute the experimental errors due to the dead time. 

INTRODUCTION 

THE statistics of counting losses associated with 
counter dead time in the case of pulsed sources is 
of considerable practical interest, because many 
investigations in nuclear and particle physics are 
performed with various types of pulsed accelera
tors. Earlier literature[ 1• 2 J on this subject had 
been confined to calculating the mathematical ex
pectation of the counting loss for counters with 
"unprolonged" dead time[3] not exceeding the in
terval between pulses. 

This last condition is not always satisfied in 
practice. For example, in some cyclic accelera
tors[4J the beam is bunched with a repetition 
period equal to the period of orbital revolution 
(about 10-8 sec). The dead time of real detectors 
usually exceeds this period, and in some instances 
is considerably longer than the repetition period 
of bunches. For example, in traveling-wave linear 
acceleratorsC5J oscillators in the 10-cm range are 
used, so that the bunch repetition period is about 
3 x 10-10 sec. 

It is of interest to study the statistics for arbi
trary relations between the dead time and pulse 
spacing, and to calculate, in addition to the mean 
values, the dispersions of counts and counting 
losses (suppressed counts). 

The analysis will be based on a sequence of 
identical pulses with constant repetition frequency 
f for both "prolonged" and "unprolonged" dead 
times.C3J The dead time T is assumed to be con
stant and unfluctuating. A Poisson distribution 
1J( t) will be assumed for the particles impinging 
on a counter (hits) during any time interval. Since 
the pulses are identical, the intensity (the mean 
number of hits per second), averaged over the 
time of the experimental run, is 

tc 

l'l = f ~ 1'] (t) dt. (1) 
0 

Time is measured here from the start of the pulse. 
Since the mean number of particles entering the 

counter in a time T is nT, which is related sim
ply to the mean count M and the mean counting 
loss L in the same time by 

nT=M +L, (2) 

only the expressions for M will be given below. 
Expressions for the dispersion will be given both 
in the case of the recorded counts (DM) and of 
the suppressed counts (DL ), since these quanti
ties, because of the statistical relation between 
M and L, do not satisfy any equation analogous to 
(2). In our derivations it will be assumed that the 
reciprocal pulse duty factor satisfies the realistic 
condition Q > 2. 

1. RELATIONS FOR DEAD TIME SHORTER THAN 
PULSE SEPARATION 

In these cases both the count and the counting 
loss during any pulse are independent of their 
values during other pulses. M, DM, and DL can 
therefore be obtained by summations over all 
pulses. 

We shall confine ourselves to the two extreme 
cases, tc » T and tc < T. In the first case, using 
the formulas for constant intensity,C3J we easily 
obtain for rectangular pulses the following expres
sions for the mean counts of counters with pro
longed and unprolonged dead times ( Mp and Mu, 
respectively): 

- -nQ" Mp=nTe , Mu = nT /(I + nQr:). 

For small loads nQT « 1, and 
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(3) 
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Mp = Mu = nT (1- nQ-r:). 

The dispersions (standard deviations) for small 
loads are thus given directly by 

DM = nT (1- 3nQ<), 

(4) 

(5) 

It follows from (3)-(5) that all statistical char
acteristics depend on the single parameter of re
ciprocal pulse duty factor Q. All relations have 
the same form as in the case of constant intensity, 
but with dead time QT. 

In the second case ( tc < T) no more than one 
count can occur during each pulse. For arbitrary 
pulse shapes we therefore easily obtain the follow
ing expressions for the mean count and the disper
sions (which coincide for both types of dead time): 

M = fT {1- e-"11}, DM = fTe-ntf {1- e-nff}, 

DL = fT {n 1 f + e-n!f- e-2nff- ne-nfflf}. (6) 

Unlike the preceding case, all parameters here 
depend only on the pulse repetition frequency. 

For sufficiently high frequencies or low intensi
ties ( f » n ), Eq. (6) is simplified as follows: 

M = nT(1-nl2f), DM = nT (1- n I f), 

(7) 

It is thus seen that the counting loss will be greater 
or less than in the case of constant intensity equal 
to n, depending on whether 1/2f is larger or 
smaller than T. 

2. RELATIONS FOR DEAD TIME LONGER THAN 
PULSE SEPARATION. EXPRESSIONS FOR THE 
MEAN COUNT 

We first obtain the mean count in the case of a 
prolonged dead time. It is most convenient to use 
Schiff's formula[s] for an arbitrary time depend
ence of the intensity, which in the given case is 

1e I 

M = fT ~ 11 (t)exp{- ~ 11 (t') dt'}dt. 
0 t-~ 

The expression for M differs depending on the re
lation between 1/f and T (Fig. 1). In one case 
(Fig. 1a), M can be calculated by dividing the in
tegral from 0 to tc into two integrals, from 0 to 
tc - t1 and from tc - t1 to tc. In the first of 
these integrals, the integral in the exponent can 
obviously be put into the form 

I le le I 

~ 11 (t') dt' = ~ 11 (t') dt' + J, ~ 11 (t') dt' + ~ 11 (t') dt'. 
1-, 1,+1 0 0 

a 

b 

'1ft) 

!-'---- r -----i 

c 

FIG. 1. Three possible relations between "• f, and te. 
a - the dead time, plotted backward from the start of a given 
pulse (on the extreme right), includes ,\ complete pulses and 
a fraction of an additional pulse; b - the dead time, plotted 
backward from the end of a given pulse, includes ,\ complete 
pulses and a fraction of an additional pulse; c - the dead 
time, plotted backward from either the start or end of a given 
pulse, includes only ,\ complete pulses. 

After some elementary transformations involving 
(1), we have 

ter 1'] (t) exp {- ~ 1'] (t') dt'} dt 
c 1-< 

te-l, t+t, 

= e-O+lln/f ~ 1'] (t) exp {- ~ 1'] (t') dt'} dt. (10) 
0 t 

In the second integral the expression in the ex
ponent is divided into only two terms, the second 
and third terms in (9). Therefore 

te I 

~ 11 (t) exp {- ~ 11 (t') dt'} dt 
te-t1 1-' 

I 

~ 11 (t) exp {- ~ 11 (t') dt'} dt. (11) 
te-l• o 

Transforming by means of the identity 

X I X 

~ TJ (t) exp {- ~ 1'] (t') dt'} dt = 1- exp {- ~ 11 (t) dt} (12) 
0 0 

and using (8) and (10), we obtain 
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lu-I• 1+1, 

iw = fTe-!..nff {e-nff ~ TJ (t) exp [ ~ TJ (t') dt'] dt- e-nff 
0 I 

lu-11 

+ exp [ - ~ TJ (t) dt ]} . (13a) 
0 

In the second and third cases (Fig. 1b and c) 
similar calculations lead to 

I, 

M = fTe-<'·+l)nff {I - exp [- ~ T] (t) dt J 
0 

lu I 

+ ~ TJ (t) exp [- ~ TJ (t') dt' J dt} • (13b) 
I, 1-1, 

M = fTe-A.n!f {I - e-n!f}. (13c) 

In the special case l\ = 0, Eq. (13c) reduces to the 
expression for M in (6). 

Equation (13c) depends only on the mean inten
sity and pulse repetition frequency, while (13a) and 
(13b) depend also on the pulse shape and on the 
exact relation between f and r. The simplest 
forms of these equations are obtained when the 
dead time contains an integral number f..L of peri
ods: 

(14) 

i.e., the count will be the same as in the case of a 
continuous source with constant intensity n. 

These results enable us to estimate the mean 
count when the exact relation between f and r or 
the pulse shape is unknown. It follows from (8) that 
M is a monotonic function of r. Therefore, when 
fr lies between the integers f..L and K, we have, 
according to (14), 

nTe-xn!f <;;; M <;;; nTe-np.ff. (15) 

At high repetition frequencies or low intensi
ties ( f » n) Eqs. (13a)-(13c) are simplified. 
Series expansions of the expressions in the braces 
give, to second order terms, 

M = nTe-l.nff {I + n( a1- +- b1 + bi/2 )It}, 
M = nTe-<'+1lnff {I - n (az + W2)/f}, 

M = nTe-l.n!f {I - n/2/}, 

lu-1 1 

(16a) 

(16b) 

(16c) 

2 lu-I• 1+1, 

a1 = ({) ~ TJ (t) [ ~ TJ (t') dt'] dt, bl =~ ~ T] (t) dt, 
0 I 0 

~ I ~ 

a2 =(~Y ~ T] (t) [ ~ T] (t') dt']dt, bz =~~ T] (t) dt. 
I, 1-1, 0 (17) 

The coefficients a1, b1, a 2, and b2 do not exceed 
unity. 

At very high frequencies, when A. » 1, we have 
T r::::: A./f and Eqs. (16a)-(16c) practically coincide, 
to within a factor of the order 1 - n/f, with M for 
the case of constant intensity. 

We shall now consider the case of unprolonged 
dead time. The simplest expression for the mean 
count is obtained either when the dead time in
cludes an integral number of periods or when the 
dead time considerably exceeds the repetition 
period. In these instances the mean count can be 
calculated by the procedure used in references 3 
and 7 for constant intensity. Let us assume that 
M counts have been obtained during a sufficiently 
prolonged experiment. Then, if r contains an in
tegral number of periods A., the total number of 
periods during which hits could not be registered 
is MA., without considering in which portions of 
the pulses the counts occurred. It follows that the 
mean number of inoperative periods is 

v =A.M. (18) 

The counting loss will be the number of hits during 
these periods; the mean loss will thus be 

I = nv If = nA.AJ If = nrM. (19) 

From (2) we finally obtain 

1\1 = nT I (I + nr). (20) 

It is easily seen that the same result follows in 
the case rf » 1, independently of the exact rela
tion between these quantities. The dead time fol
lowing each count then includes an integral number 
A. of complete pulses and fractions of two pulses 
at the beginning and end of the dead time. Since 
A.» 1 the mean number of hits during these frac
tions can be neglected compared with the mean 
number during the large number of complete 
pulses. All considerations leading to (20) there
fore remain valid. Equation (20) differs in no way 
from the corresponding expression for the con
stant intensity case, i.e., here also the pulsed 
character of the source does not affect the results. 

For an arbitrary relation between f and r we 
shall calculate only the upper and lower limits of 
M; this can be done easily in the following manner. 
If A. is the number of complete periods included in 
the dead time (neglecting fractional periods), in 
the case of M counts we obviously have 

A.M<;;;v<;;;(A.+l)M. (21) 

Hence, by analogy with the foregoing calculations, -
we have 

nT -- nT 
1 +'An If> M > 1 ,- (1. -,- 1) n; t · (22) 
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These narrow limits permit a highly accurate de
termination of M in the cases of large A. and 
small loads ( A.n « f). 

3. RELATIONS FOR DEAD TIME LONGER THAN 
PULSE SEPARATION. DERIVATION OF THE 
DISPERSIONS 

The expressions for the dispersions will be de
rived only in the most interesting practical case 
of small loads ( nT « 1 ). Since the statistical re
lations for the different types of dead time coincide 
in this case, [3] we shall consider only the unpro
longed dead time, for which the calculations are 
easier. The dispersion of the counts can now be 
derived, as in [3J, by passing frcom the statistics of 
counts to the statistics of pulse intervals. The 
number ri of complete periods between two suc
cessive counts obviously does not depend on the 
exact times when preceding counts occurred. On 
the other hand, in the present case ( T > 1/f - tc, 
nT « 1) the mean value of ri is considerably 
greater than unity. Therefore in the case of 
"good" statistics (large M during the experiment) 
the total number of periods is approximately 

M 

R = 2J r1• (23) 

The mean values r and the dispersions Dr of 
all ri are obviously identical. Therefore, because 
of the large number of independent ri, R has a 
Gaussian distribution with mean value and disper
sion given by 

EVJ 
Time of Time of 

count count 

FIG. 2. Relations between ri, A, and Pi• ri - number of 
complete periods between two successive counts; A-number 
of complete periods in time 't"; pi -number of complete pe
riods between termination of dead time and time of next count. 

This formula is used to calculate r and Dr (as in 
Chapter 1, Sec. 6 of[3]): 

(28) 

Substituting in (25) and using the formula R = fT, 
we finally have 

DM=nTJ(l+'Anjff=nT(l-3'Anff). (29) 

This equation is based on the fact that we are con
sidering small loads. When T contains an integral 
number of periods or fT » 1, we have A./f = T, 
and (29) differs in no way from the corresponding 
expression for continuous operation with constant 
intensity n. 

The expression for the dispersion of the count
ing loss can also be derived by a familiar proce
dure (Chapter 4, Sec. 6 of[3J). Without presenting 
the calculations, we note only that at small loads 
and for fT » 1 the result is the same as 1n the 
case of constant intensity. 

R=Mr, (24) CONCLUSIONS 

Passing from the statistics of intervals to the 
statistics of counts by means of Bayes' formula 
and confining ourselves to "good" statistics, we 
obtain (as in Chapter 2, Sec. 6 of[3]) 

M=RJr, (25) 

DM will be derived after r and Dr are deter
mined. In the given case ( ri » 1) ri can be rep
resented, with an error not exceeding unity (Fig. 
2), by 

(26) 

It follows from (26) that the probability of ri com
plete periods in the time interval between counts 
equals the probability that no particles arrive 
during ri periods but that a particle does hit dur
ing the following period: 

(27) 

The foregoing analysis has shown that the count
ing loss associated with dead time depends essen
tially on the relation between the dead time and 
pulse duration and spacing. With increasing pulse 
repetition frequency and reduced pulse duration 
for the same mean intensity, the counting loss 
tends generally to diminish. While for tp » T the 
counting loss increases by a factor Q compared 
with the case of constant intensity (and Q is often 
of the order of tens of thousands), when tp and T 

are comparable the counting loss is very close to 
that obtained with constant intensity (multiplied by 
no more than a few units). Finally, when fT » 1, 
there is no difference between these quantities, 
and all statistical relations are identical for the 
two cases. The difference also disappears when 
the condition fT » 1 is unfulfilled in the special 
case of a dead time containing an integral number 
of periods. 
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Our results show particularly that high-fre
quency bunching of beams in linear accelerators 
has no effect on the experimental errors associ
ated with the dead time. 

1 C. H. Westcott, Proc. Roy. Soc. (London) 
A194, 508 (1948). 

2 N. Feather, Proc. Cambridge Phil. Soc. 45, 
648 (1949). 

3 Gol'danskii, Kutsenko, and Podgoretskii, 
Statistika otschetov pri registratsii yadernykh 

chastits (Counting Statistics in the Registration of 
Nuclear Particles), Fizmatgiz, 1959. 

4 M. S. Livingston, High-Energy Accelerators, 
Interscience Publishers, New York, 1954. 

5 E. L. Chu and W. Hansen, J. Appl. Phys. 18, 
996 (1947). 

6 L. I. Schiff, Phys. Rev. 50, 88 (1936). 
1 B. V. Gnedenko, JETP 11, 101 (1941). 

Translated by I. Emin 
78 


