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The transition radiation that arises when a charged particle passes through the boundary 
of a plasma (with dielectric) described by linearized hydrodynamic equations is investi­
gated with account of the effect of the temperature. 

GINZBURG and Frank[1] (see also [2•3]) have the electron density from the equilibrium value p0• 

discovered that radiation is produced when a The values of u and p are determined by the fol-
charged particle passes through the interface lowing system of linearized hydrodynamic equations 
between two media with different refractive in-
dices. The formulas were derived in these papers 
without account of spatial dispersion of the media. 

In the case of a plasma, account of the tempera­
ture gives rise to spatial dispersion. We consider 
below the transition radiation in a plasma with 
account of the temperature. The ions are assumed 
to be stationary, so that their effect reduces to 
neutralization of tb.e equilibrium electron density. 

Let a particle with velocity v and charge q 
move along the z axis and cross at the instant 
t = 0 the interface between a certain medium 1, 
having a dielectric constant E ( w ), and a plasma 
(medium 2 ). The plasma fills the half-space 
z < 0. 

The electromagnetic field excited in the plasma 
by the moving particle is de-scribed by the Maxwell 
equations 

rot E = - __!_?_I! 
c at · divE=4n[e! +ql'J(r-vt)J, 

rot H = + ~~ + 4n [e : u + qvl'J (r - vt) J , (1) * 

where u is the velocity of motion of the plasma, 
m is the electron mass, and p is the deviation of 

where J 1 {;\r) are Bessel functions of first order; 
the plus sign is taken for an incoming particle and 
the minus sign for a particle outgoing from the 
plasma. 

*rot= curl. 

~~ + Po div u = 0, 
au e 0 

PoTt + 'Vp -m PoE= , 

'Vp = v~'Vp, v~ =Tim, (2) 

where T is the plasma temperature. The compo­
nents of the fields in medium 1 are determined 
from the equations 

rot E = - __!__ aH div D = 4nql'J (r - vt), 
c at • 

1 aD 
rot H =cat+ 4nqvl'J (r- vt), 

+oo 
D (r, t) = ~ e (w) E (w, r) eioot dw, (3) 

-oo 

and the hydrodynamic equations differ from (2) in 
that the term with E is missing. In addition to the 
continuity of the tangential components of E and H, 
the conditions satisfied on the interface are equality 
of the pressures (Pi = p2 ) and equality of the nor­
mal velocity components ( Utz = u2z). 

Choosing as solutions waves outgoing from the 
origin, and using the formulated boundary condi­
tions, we obtain for the fields in the plasma 

We introduce here the following notation 

(4) 

e2 = 1- (wofw)2, w~ = 4lte2Po2lm2, k~,2 = ffi2e1,2/t!', 

k~2 = w2 e2/v~, 

x~,2 = kt2- A.2, ai = (w/vo1)2 - A.2, a;= w2 e2/v~2 - A.2, 

fi.2 = w2/rl' + A.2 - ki.2• Y = (1 - e2)/(e2a1Po2/Po1- <12). 
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Let us change to spherical coordinates by means 
of the relations r = R sin e and z = - R cos e 
(where R is the distance from the origin to the 
point of observation). For large values of R the 
integral (4) is evaluated by the method of steepest 
descent. [2] Carrying out this integration and cal­
culating the energy flux in a solid angle dfl 
= sin e de dcp over the entire transit time of the 
particle, we. obtain the radiated energy for a 
charged particle traveling into the plasma: 

dW q2v2 . 2 a 2 n 
00~ yB; I A 12 dw - = - 2- sm v cos u , 

dQ ltd' le1 cos6+Ve,(Bt-8zsin2 6)!2 
0 

A= (et-e,) (1-e,~2 - ~ Vet-e2 sin2 6) 

(1- ~·e, cos• 6) (1- ~ V Bt- e, sin2 6) 

[ 1 1- "·~· J 
X 1 + (vfvo2) v Ez (1- V~ sin' 6/c") 1 - E2~2 cos• 6 • (5) 

This formula describes the total energy radiated 
from the plasma, including the Cerenkov radiation 
generated in medium l.[a] When T = 0 this equa­
tion is equivalent to the corresponding expression 

(38) of the paper of Ginzburg and Frank[1] [with 
v replaced by -v in Eq. (38)]. 

It follows from (5) that the temperature plays 
a significant role if the velocity of the charged 
particle exceeds the average thermal velocity of 
the plasma electrons. When v/v02 « 1, the tran­
sition radiation in the plasma is independent of 
the temperature. In analogy with the interaction 
between a particle and an unbounded plasma, we 
can assume that the intensity is independent of 
the temperature because the hydrodynamic ap­
proximation is used to solve the problem (see [4J). 
Apparently, a temperature dependence would ob­
tain in the kinetic approximation. 

If the particle moves in the opposite direction 
(from the plasma into medium 1), the formula 
for the radiation is obtained from (5) by substi­
tuting - v for v. The divergence arising when 

I ( 2 ) V 002 • 2 1 --V e2 1 - - 2 sm 9 = 0 
Vo2 c 

is due here to the occurrence in the plasma of a 
cylindrical Cerenkov wave obtained from (4) 
(see [2]): 

(6) 

H 2 = V q . r CexP{i[wt-~R(•f1-e2 (~'-~•)cos6+sinejfv.'e2 -1)]}dw, 
c 2ltvR sm 9 Joo V v02 v02 

The angle determined by relation (6) character­
izes the cone of the Cerenkov waves reflected from 
the interface. 

Thus, for a particle with velocity greater than 
the mean thermal velocity of the plasma electrons, 
we obtain for the transition-radiation energy 

c 

dW tr = q•v• sin• 9 cos• 9 r ye; I A I' dw 
dQ 112c" ~ I Bt cos 0 + V e, V Bt- e, sin2 9 12 ' 

A = (Et- e,) (1- "·~· + ~ v Bt- e, sin2 e) 
(1- ~2e2 cos2 0) (1 +~Vet- Eo sin2 0) 

+ Vool!t (1- e2) (1- ~2e2 ) 

vre,(1 + Ve2p02/Pot)(1-~2e,cos2 0) 

For the Cerenkov radiation we obtain the energy 
flux through an annular area r, r + dr over the 
entire transit time of the particle: 

(8) 

dWcer = .J:_ r (1-e,)2 {(t12Ez/t1~-1) [1-ez(V2/V~2 -v2/c2)]} 1/'·mdw 
dr v2 ~ ezl S 12 ' 

0 

Here, as in formula (7), the integration extends 
over the frequencies 

[ ( 1- 0~2 sin2 9 ) 
2 )-'/, C I 

( 
t/02 w0 1-- < w < Wo---~-----
v . v2 v2 j'1• 

I 1-~- ~sin2 9) . 
\ v2 c2 

Let us mention also the transition radiation 
produced when a particle crosses the interface 
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between a plasma and a dielectric, on which inter­
face the normal component of the plasma velocity 
vanishes, u2z = 0. The boundary conditions for the 
fields E and H remain the same as before. All 
the results are obtained for this case from formu­
las (5) - (9) by putting Pot = co. In order to obtain 
the corresponding expressions for the vacuum­
plasma case it is sufficient to put Et = 1 and Pot 
= co in (5)- (9). It is assumed here, naturally, 
that the interface is a solid wall. 

In conclusion, the authors express their grati­
tude to F. G. Bass for guidance and also to E. A. 
Kaner for useful advice in carrying out this work. 
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