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It is shown that when the sign of the yN-scattering pole diagram connected with rr0-meson 
decay is correctly chosen, the contribution of the pole to the cross section for the scatter
ing of y quanta by protons decreases considerably. In order to obtain information on the 
lifetime of the rr0 meson, the precision of the experiments must be appreciably improved. 

1. INTRODUCTION 

AI few years ago LowUJ called attention to the 
presence of a pole diagram connected with the 
decay of the neutral pion, in the amplitude of elas
tic scattering of y quanta by protons. An account 
of this diagram, from the point of view of the 
double dispersion relations for yN scattering, is 
equivalent to an examination of the nearest singu
larity in Q2• Several interesting considerations 
in connection with the double dispersion relations 
for yN scattering are contained in the paper by 
N. F. Nelipa and L. V. Fil'kov (preprint).* 
Zhizhin [21 considered a contribution of this ampli
tude in different states. Recently, Hyman et al [3J 
and in greater detail Jacob and Mathews [4J noted 
that the addition of the one-meson pole amplitude 
greatly improves the agreement between the theo
retical and experimental results in the y-quantum 
region from 100 to 250 Mev. This problem is con
sidered in detail in a recently published paper by 
Bernadrini, Yamagata, et al. [5] 

It is known that an analysis based on dispersion 
relations [S, 7J leads to scattering cross section 
values greater than the experimental values in this 
energy region. In the present paper we wish to call 
attention to the sign of the pole amplitude, which is 
very important, since the interference terms play 
the principal role. From the results of Goldberger 
and Treiman[SJ for the decay of the neutral pion, 
and from the dispersion relations for forward scat
tering, which we used previously, [7J it follows that 
the (relative) sign of the pole diagram differs from 
that used by Jacob and Mathews. Thus, the addition 

*The authors are grateful to Nelipa and Fil'kov, and also 
to Dr. Yamagata (see below), for acquainting them with their 
results prior to publication. 

of the pole diagram does not improve the agreement 
between the theoretical and experimental results, 
and the discrepancy calls for a different explanation. 

2. SCATTERING AMPLITUDE 

We denote by p and p' the nucleon momentum 
vectors in the initial and final states, respectively, 
and by q and q' the same quantities for the y 
quanta. Since they satisfy the conservation law 

q +P = q' +p', (1) 

it is convenient to introduce the following four or
thogonal vectors: 

K = -i- (q + q'), Q = -i- (q'- q). = + (p- p'), 

P' = P- K (PK)/1(2, N.,. = iep.vapP:KaQp. (2) 

where P = (p + p' )/2. From these four vectors 
we can construct two independent scalars: 

Mv = -(PK). 

The lengths of the vectors introduced in (2) are 
connected with Q2 and Mv by the relations 

1(2 = _ Q2, p2 = _ (/' _ M2, 
p'2 = p2 _ (PK)2fK2 = Q-2 [M2v2 _ Q2 (Q2 + M2)J, 

(3) 

N2 = _ p'21(2 Q2 = Q2 [M2v2 _ Q2 ( Q2 + M2)). (4) 

The S-matrix element for yN scattering can be 
represented in the form 

(p'q'ISipq> = <p'q'ipq) 
. MN + __!__ t'j(4) (p' + q' - p - q) ' ' • ' 

2n (PoPoqoqo) 1' 

where 

N = u (p') e~N p.vevu (p) 

= 2nzi ( '::2~ )"' ~ d4 ze-i<K•l<p' J T (e' ·i (f)) 

X ( e ·i (- f)) I p ) • 

(5) 

(6) 
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In the center-of-mass system ( c.m.s.) the differ
ential cross section is given by the relation 

~= ~ !!:iN\2 
do L..J W ' 

spins 

where w2 = - ( P + K) 2 is the square of the total 
energy in the c.m.s. 

The scattering amplitude N can be written as 
a sum of six invariant functions CK = yJJ-KfJ): 

(7) 

e~Np.vev = (e'P~.~eP') !T1 +iKTzl+ (e'N1~eN) ITa + iKT4] 

_ (e' P') (eN)- (e' N)(eP') i 6T6 
(P'•Nz)'/, y 

+ (e' P') (eN)+ (e'N) (eP') KT 
(P'2N")'!, 'Yo s. (8) 

In some cases it is also convenient to represent 
the amplitude as an operator in spin space in terms 
of six non -covariant functions Ri: 

~ e~N 1,vev= R1(ee1
) +R2(s 1s)+iR3 (o[e1e1) + iR4 (o [S 1 SJ) 

+ iR6 [(ok) (s 1e)- (;~k~) (se1)] 

+iRs [(Ok1
) (s 1e)- (ok) (se1 )J, (9) * 

where s = k x e, S 1 = kl x el; e, k and e', k' are 
the polarization of photon-momentum unit vectors 
before and after scattering, respectively. 

3. MATRIX ELEMENT OF NEUTRAL-PION DECAY 

The S matrix for the decay of the neutral pion 
has the form 

1 1 
<ql q Is I q,. > = --,~ v- (2n)46<4> (q" - q - ql) 

(2.n) ' 2wk 

x(q1 q\l(O)IO), (10) 

where q and q 1 are the photon momenta; q1T is the 
4-momentum of the pion; J (x) is the current of the 
pion field: 

J (x) = i 6q6~x) s+ = igo1j) (x) 'Yfi't'3'i' (x) (11) 

[cp(x) is the meson-field operator, 1/J (x) is the 
nucleon-field operator, and g0 is the non-renor
malized constant of the pion-nucleon interaction]. 
The Heisenberg equation for the meson field can 
be written in the form 

(- ~! + m;) q> (x) = J (x), (12) 

and in the notation of Goldberger and Treiman ESJ 

.Jt = (~n) 3 V4qql <q' q 1 J 1 o> 
(13) 

where F (q2 ) is the form factor. The expression 
for the decay S matrix contains F (- m~). 

*( e e 1) = e • e 1 [ e e 1
] = e X e 1 

• 

The probability of decay of the neutral pion is 

w = ~ (2'Jt)3 J (qq; Is I q,> 12/VT 
•q'ee' 

_1_(\(4) ( - - ') .J3 .J3 I = (2n)2 Q~ q q u-q u-q 

X ~ [(es') +(e1s)]2j F j2. (14) 
••' 

Summing over e and e' and integrating over the 
angles we obtain in the pion rest system 

w = (m!/64n) I F j2 • (15) 

The pion lifetime T is 

(16) 

Using the dispersion technique, Goldberger and 
Treiman have shown that 

_ ge2 fo + p/1 ( 
F (0) - - 4n•m,. ( l + ftp) 1 + (g"/4n)ft , 17) 

p = [2p,p- (p,~- p,~)l/(l + ftp). (18) 

where JJ-p and JJ-n are the anomalous magnetic mo
ments of the proton and neutron, while I0 and I1 

are positive integrals. It follows from (17) that 

F (0) g < 0. (19) 

This sign is of importance for what is to follow. 

4. SINGLE-MESON DIAGRAM FOR THE SCAT
TERING OF GAMMA QUANTA BY PROTONS 

The S-matrix element of the pole diagram is 

(p 1 Q1 1 S- lj pq) = ig (2~)3 ii(p') Ys u (p) 

x6<4> (p' + ql- p- q) 

x (2n}4 1 
2 (q'IJ, (0) I q). (20) 

(p~-p)•+m" 

It can be shown that 

<q' i J" (O) I q> 
1 -----,..,.- (- i) ef'vo>. e~ ev q: q>. F !(q'- q)!]. (21) 

(2n)a (4qoq'oJ'i• 

Since the matrix element ( q' I J1T( 0) I q) is taken 
for the pole at ( q' - q )2 = - m;, Eq. (21) contains 
exactly the value of F encountered in the 1r0 decay. 

Substituting (21) in (20) and going to the c.m.s., 
we obtain 

- p- q) 2:11 [i (()k) (es')- (-Jk 1
) (e's)) 

- i ((ok') (es')- (ck) (e's))]. (22) 

Comparing (22) with (9) we obtain for the contribu
tion of the pole diagram 
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R,,, = R2P == R3p = R!P = 0, 

R -- R -- gF q" 5P - - 6P - -8 ·· ·w· , 2 ; 
Jt (P-p')c+m:: 

(23) 

from this we conclude that the contribution made 
to the amplitude by the pole diagram due to the 
exchange and decay of the pseudo-scalar neutral 
meson reduces to the combination 

gFm., q 1 
Rop- R6P = --- ,, (24) 

SnW mn 1 + m;,J2q"- co'() 

It is important to note that by virtue of (19) 

Rsp- R6P <0, (25) 

if it is assumed that F ( 0) and F (- m~) do not 
differ greatly. 

In the expression for the cross section [for
mula (16) in [5J] the pole term enters in the com
bination 

1-!Ro-R6i2 (l-cos0)3 

- Re (R3 -R4)* (R5- R6) (1 -cos 6)2 • (26) 

The contribution of one pole diagram has the form 

I~ (6) = + \ Ra- R6\2 (1 -cos 6)3 

2 ( q )z gz ( 1 )2 (1-cos0)3 (27) 
= m" 't W 11n mn (1 + m! 1 2qz-cos 0)2 

which agrees with the result of Jacob and Mathews. 
We can expect the cross section of scattering 

by 90° to be reduced by addition of the pole term 
only when the second term in (26) is negative. 
Since R4 is large and negative, owing to the large 
anomalous magnetic moment of the proton, 
Re (R3 -R4 ) is a positive quantity in the region 
of energy under consideration. Thus, the second 
term in (26) is positive if R5p- R6p < 0. Conse
quently, assuming the analysis of Goldberger and 
Treiman to be correct, the pole diagram does not 
decrease the theoretical value of the cross section, 
but increases it. 

If we use the results of our own analysis, [7] we 
find that Re ( R5 - R6 ) is determined not only by 
the limit theorem, but also by the amplitudes of 
photoproduction of E 2 and M3• Since in this case 
the "isotropic" part of the contribution of the pole 
amplitude is automatically taken into account, it is 
necessary to add to the previously-obtained ampli
tude not all of expression (24), but only the 
contribution of (24) to the higher states, i.e., the 
difference 

(Rs- R6)p -- ;;.~ ~ (Rr.- R6) p sin BdB . 

As a result of this procedure, which is necessary 
in order not to violate the unitarity of the S matrix 
(when 8 = 90°), the quantity y 01 (where Yo= 1 

+ m~ /2q2) is replaced by 

Yu-1 - ~In I (y0 + I) I (y 0 - l )i, 

which leads to replacement of % by -0.14 when 
q2 = m~ (yo=%). 

Thus, the contribution of the amplitude is de
creased by a factor of 5, and the sign of the con
tribution changes. By virtue of this, a much higher 
accuracy is necessary before the connection be
tween the amplitude of the neutral-pion decay and 
the amplitude of the scattering of y quanta by pro
tons can manifest itself. It was recently shown 
that the lifetime of the neutral pion is ( 2.0 ± 0.4) 
x 10-16 sec, [9J which also decreases the contribu
tion of the pole diagram. 

The indeterminacies in the analysis of the pho
toproduction cannot influence the conclusion re
garding the sign of the interference term in (24), 
since this sign is determined by the well known 
theorem for low energies. The scattering ampli
tude at low frequencies, first obtained by LowUOJ 
and Gell-Mann and Goldberger,U1J is reviewed in 
the appendix, where it is obtained as the contri
bution of the single -nucleon terms (see [GJ ) . 

We note, in particular, that 

yo= _c_ (1 + 'A) Q" 
5 M 1.{' 1M"- v 2 ' 

(28) 

Let us give another, less rigorous but more il
lustrative proof of the correctness of the determi
nation of the sign of the pole diagram.* 

The matrix element < q' I Jrr( 0) I q) can be rep
resented in the form 

(q'\ J,. (0) \ q) = iep.volcC~ Cv qa q~ (L.jnJ'' F [(q- q')2] 

= _ 2Q2 F (r' P') (crY\- (e' N) (cP') 

(L.n1" (P'" N 2 )'/, ' 

so that 

(p'q' IS- 1 i pq) = i (2n)-2 go(4) (p' + q'- p- q) 

x iu (p') 'Ysu (p) 

2Q2 F (c'P')(PN)-!e'N)(cP') 

X 4Q2 + m; (P' 2 N 2 )'1• 

hence 

gF Q2 
T 5P = --;; ---"---::

" 4Q2 + m! 
We now introduce the function 

(29) 

(30) 

(31) 

(32) 

If we regard f ( v, Q2) as an analytic function of 
Q2 at fixed v, we obtain from Cauchy's theorem 
and from (31) 

*An analogous approach was used earlier12 to obtain the 
Goldberger-Treiman relations. 
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f(v, Q2) =g: LlQ•:m~ +JQ, (33) 

where JQ is the dispersion interval, the lower 
limit of which is 4m~. In the region Q2 « 4m~, 
the integral in (33) is small and we can approxi
mate f ( v, Q2 ) by the expression 

f (v, Q2)::::::; g: 4Q': m~ (34) 

On the other hand, f ( v, Q2 ) is also an analytic 
function of v for fixed Q2• By Cauchy's theorem 
with account of (28) we have 

where J v is a second dispersion integral. In the 
region 2v ~ m 7p the pole term will predominate 
and 

• 2 e2 (1+A.) i 
t(v, Q)::::::: M Q•;M•-v• · (36) 

It is obvious that (34) does not hold near M2v2 r;:; Q2, 

and (36) does not take place when 4Q2 = -m~. It is 
still possible, however, that expressions (34) and 
(36) are valid simultaneously near certain values 
of v and Q2• Equating these expressions for 2v 

= mw and Q r;:; 0, we obtain 

F = - 4:n:e2 (l + 1.)/gM, (37) 

which is very close to the formula of Goldberger 
and Treiman, obtained by an entirely different 
method. 

Actually, from (17) we obtain for ( g2 I 4w2 ) I1 

»1 

F = _ 4)1 e2 (1 + A.) lo + pit 
g It ' 

which coincides with (37), apart for a numerical 
factor. 

The literature reports two different choices of 
the common phase for the yN scattering ampli
tude, one with a Thomson limit +e2/M, the other 
with - e 2/M. The error in the published papers 
lies in the fact that the choice of the common fac
tor in the one-meson amplitude does not corre
spond to the choice of the sign of the remaining 
amplitude. 

A direct comparison of the amplitude used by 
Jacob and MathewsC4J with (9) shows that the func
tions fi introduced in C4J are related with Ri by 
the equations 

- / 1 = R1 + R2 cos fl, f2 = R.2. 
fa = R.3 + R.4 cos fl + (R.6 + R.6) (1 +cos fl) 

- (R.s- R.6) (1 -cos fl), 
f4 = R.4, fs = R.4 + R.s. f6 = R.6, 

where the difference in the common phase factor 
is taken into account, and from which it is clear 
that the sign used in C4J for the pole term differs 
from that proved in the present paper. 

APPENDIX 

SINGLE-NUCLEON TERMS IN THE DISPERSION 
RELATIONS 

Recognizing that 

r(e'·i(-f))(e·i(-f)) = e (zo)[e·i'(f). e·i(-f)] 
+(e'·i(f))(e·j(-f)). (A.1) 

we determine the retarded and advanced amplitudes: 

Nr,a = ± 2:n:2 i (PoP~IM2)'1' 

x~d4ze±i(Kz) (p' \0 (±z0) [e' · j( f), e· i(- ~)] j P). 
(A.2) 

The vertex part of the current has the form 

<p' 1 ei (O) i p> = <2~l" u (p') [; + i 4~ (e (p'- p) 

- (p'- p) e)]u(P) = (:)~ u (p')[(l +A.) e+ ~ (eP)] u(p), 

(A.3) 
where E is the charge of the nucleon. 

The pole term has in the region of positive fre
quencies the form 

A0 c~ _(2~L2Jo(4)(k-p+p.,)<p' C·i(O)•p, 

. '· ' E2 \' 3 01 . . ·. <Po!eJ(O)ip,>=T.ldpnO (k--p ;-p") 

-I Ail''"·-
xu (p') L (1 +A) e+ ifep' j u (P -K) u (P - Ki 

x [P +A.) e' + ~ e'pju (p). (A.4) 

Using the relations 

L u (P - K.) u (P - K) 
-i(P--KJ+M 

(A.5) 

(2p,10)-l d3pn = d4pn6 (Pnn} 6 (p~-+ ,W), (A.6) 
we obtain 

AO ~= ~ 0 (p; +M2) u (p') [(! +A) e+~' (ep') J 
x [- i (P- k) +Mlj(l +A.) i' +~ (e'p)J u (p). (A. 7) 

We can express A0 in terms of the fundamental 
invariants : 
Ao _ (e' P') (eP') Ao 1 (r' N) (eN) Ao 

- jJ'!. 1 T N2 2 

_, (e' P') (eN)- (e' N) (eP') qo , (e' P') (eN)+ (e' N) (eP') Ao 
I (P''N")'h f :l I (P'' N')'fz (A. 8) 

Comparing (A. 7) and (A.8), we obtain 

A~P'2 = ~ o (p~, + M2) u (p') [(l +A.) P' + ~ (P'p')] 

X[- i (P-I()+ M] [(l +A) P' + ~ (P'p)1 u (p). (A.9) 
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It is easy to verify that 

(P'p') = (P', P- Q) = (P'p) = P'2 , (A.10) 

u (p') IF'(- i (F- k) +M) F'l u (p) 

= u (p') {- iKP'2 +2P'2 M +2i(P~) KP' 2} u (p),(A.ll) 

u (p') F' [- i (P-K) + M] u (p) = u (p') [M (iM- (~~) K) 

- i (P2 + (PK)) + i (<Pk) + u;:;> kP) J u (p), (A.12) 

u(p') 1(-i(F-K)+M)F'lu(p) 

= u (p') [M (iM - (PK~) K) - i (P2 +(PI\)) 

+ i(KP+ ~~~) J5k)] u(p), (A.13) 

u(p') [- i (F-K)+Ml a (p) = £l(p') [iK+2Ml u (p). 
(A.14) 

Using (A.10)- (A.14) and noting that at the pole 
we have 

(P -1\)2 = P2 + 1\2 - 2(PK) 

= 2XZ - 2 (P !\) - M2 = - /W 

or that 

1\2 =(PI\), 

we obtain 

A~= ~ e26 (21<.. 2 - 2 (PI\)) u (p') (2M + ik} u (p) 

= 88~ o ( v- ~) u (p') (2M+ i k) a (p). 

Analogously, 

(A.15) 

(A.16) 

A~= - 8~1 cr( v- ~) u (p') iK u (p) (I + ;\)2 , (A.17) 

e2 11 +A) r· Q2)- I r P' 2 ' • 'J = 8M o,"- M u (p) I M (K - tM) N u (p). 
(A.19) 

From (A.18) and (A.19) we find 

A~ (P'2N2)'1• = 82 (~~A) 6 ( 'V- ~) (- iP'2) u (p') N u (p), 

Ao (P'2N2)'!, - e2 (1 + A) _.. ( Q'\ p·• - ( ') N' v ( ) a - -H~ u v-M}Mu p J\U p. 
(A.20) 

It can be shown that 

u (p') NKa (p) = (P' 2N2 )'1• iu (p') y"u (p). 

iu (p') Nu (p) = K.2u (p') YsKu (p). 

If we now take into account the fact that ( P' 2N2 ) 112 

= P'2Q2 by virtue of (4), we obtain from (A.20) 

0 P.2 (1 + A) ( Q2) ;- I A3 = - SM o v- M tu (p) y5 u (p), 

o e2 (1 + /..) - • A4= BM 6(v-Q2/M)u(p')y5 1\u(p). (A.21) 

Finally from (A.16), (A.17), and (A.21) we obtain 
o e2 Q" o e2 'V 

T 1 = ~nM Q'/M 2 - v2 ' T 2 = 4nM Q'/M 2 - 'V2 ' 

o o e2 (1 +-/..)2 v 
T3=0, T4=- 4nM Q'/M"-v2 ' 

o o e2 (1 + A.) Q2 ( e2 1 ) 
T,=MTs= 4nM Q'/M 2 -v2 \4:n: =137 ' (A. 22) 

which coincides with the previously-obtained re
sults and has the correct signs. 

In all the calculations of the single-nucleon 
terms it is assumed that parity is conserved in 
the electromagnetic interactions. The results ob
tained remain valid also in the presence of CP 
invariance. 
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