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The elements of the tensor Cf'a(3<w ), which describes the spectral intensity of the fluctua­
tions in electrical current in a nonrelativistic magnetoactive plasma in a strong constant 
or rapidly varying electric field, are calculated. Expressions are also derived for the ele­
ments of the effective-temperature tensor Taf3, which is introduced as a formal extension 
of the well-known fluctuation -dissipation the8Jkm (Nyquist formula) to the case of a non­
equilibrium plasma. Several particular cases are considered. 

l. The theory of fluctuation spectra in systems in 
thermodynamic equilibrium derives chiefly from 
the so-called fluctuation-dissipation theorem, 
which establishes the connection between the 
spectral intensity of the fluctuations of an arbi­
trary physical quantity and the corresponding (to 
this quantity) conductivity (which determines the 
dissipation of energy in the system) and the abso­
lute temperature T.[t-3J In particular, the tensor 
<Paf3(r, r', w), which describes the spectral in­
tensity of the fluctuations in electric current den­
sity j ( r, t) in a uniform anisotropic absorbing 
medium, is given by (only classical fluctuations 
are taken into account, i.e., nw « kT, and spatial 
dispersion is neglected) 

00 

<Pa:>(r, r', w)= 2~ ~ (ja(r,t)j~(r',t+•))e'"''dT 
-00 

= k~ Oa!l{w) 6 (r- r'), (1) 

where a a{3 ( w) is the conductivity tensor.* The 
theorem in (1) makes it possible to formulate and 
solve the problem of thermal radiation of hot bodies 
(media) within the framework of macroscopic 
electrodynamics;[2•4• 5J in this case the fluctuation 
current j ( r, t) is regarded as a transverse cur­
rent. 

*A complex dielectric tensor E~Jl (to take account of ab­

sorption) of form E~Jl = Eafl- i4rraaj3! w can be defined 

uniquely, as is well known, if we require that Eajl and aa(3 

must be Hermitian tensors. We also note that the tensor 

<I>ajl(r, r', w) is related to the tensor <iaw(r) i~w'(r')>, where 

j Jr) is the Fourier component of the current j (r, t), by the 

relation 

<iaw (r) i~w' (r)) =<I:> a~ (r, r', w) 6 (w- w'). 

If we now consider media that are not in ther­
modynamic equilibrium (although they may be 
stationary in the sense that the conditions do not 
change in time), obviously there is no universal 
relation between the tensor <P a{3 and a a{3 such as 
that given by (1) for equilibrium systems. A rela­
tion can be obtained between these tensors only by 
the formal introduction of an additional, (generally, 
frequency-dependent) Hermitian tensor T~ft< w) 
(which we call the effective-temperature tensor)* 

<Pa~ (r, r', w) =(kin) T"~~f (w) cry~ (w) 6 (r- r'), (2) 

where a a{3 ( w) is the conductivity tensor corre­
sponding to the given nonequilibrium state of the 
medium. 

It is clear that this formal generalization of 
the fluctuation-dissipation theorem does not yield 
any advantage as far as determining the tensor 
<P a{3 is concerned; this follows because in general 
there will be no method of computing the elements 
of the tensor T~ft other than independent calcula­
tions of the elements of the tensors <P a{3 and a a{3 
and the expansion of the matrix equation (2) with 
respect to T~. Nevertheless, in certain cases 
it is convenient to use (2) (cf. below). 

One of these cases arises when the tensor 
Taff3f( w) reduces to a frequency-independent scalar 

e ( . 1 a{3 a{3 ) I T eff more precise y, when T ff = T effo a{3 • n 
this case, as in the case of media in thermodynamic 
equilibrium, <P a{3 is determined completely by 
u a{3 and, as far as electromagnetic fluctuations 
are concerned, the nonequilibrium medium behaves 

*The general approach to the notion of an effective tempera­
ture for arbitrary nonequilibrium systems has been given earlier 
by the author. 6 
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like an equilibrium medium at temperature Teff· 
This case is the situation, for example, in a highly 
(in particular, in a fully) ionized plasma (cf. be­
low). 

In the present paper kinetic theory is used to 
calculate the elements of the tensor <I> a{3 ( r, r', w) 
for a nonrelativistic plasma in a strong, uniform, 
constant or rapidly varying electric field E and a 
fixed uniform magnetic field H0• By rapidly vary­
ing here we mean a field E characterized by a 
frequency that satisfies the relation Q » T£ 1 

"' Oeffl' eff• where T E is the relaxation time for 
the electron energy E = mv2/2. The quantity Oeff 
is the mean relative fraction of the energy lost by 
an electron in a single collision with a heavy par­
ticle ( 6eff « 1); Veff is the effective frequency 
of collisions between the electron and heavy par­
ticles (more precise definitions of these terms 
are given, for example, in £7J). If the above con­
dition is satisfied, just as in the case in which E 
is constant,* the plasma reaches a stationary state, 
that is to say, the symmetric part f0( v) of the 
electron distribution function 

f (v) = fo (v) + vt1 (v)/v 

reaches some average time independent level (the 
variable part of the function f0 ( v ) is of order 
(~hE) - 1 and can be neglected). The function f0( v) 
will differ appreciably from a Maxwellian distri­
bution f00 ( v) corresponding to the temperature of 
the heavy particles T (i.e., thermal equilibrium 
no longer holds) when the field E becomes suffi­
ciently high: (BJ 

E 'd Ep = [3kTmo eff (Q2 + v~ff)/e2 ]';,, 

where V~ff is the effective collision frequency in 
the absence of the field E. In further discussion 
of the nonequilibrium plasma we will keep in mind 
the fact that the plasma is in a nonequilibrium state 
due precisely to the presence of such strong fields 
E. 

2. We start by calculating the tensor for the 
current fluctuations. If spatial dispersion is neg­
lected, in which case the spatial correlation is 
local ( 6 -correlation), £S, 10J this tensor can be 
written in the form 

(j, (r, t) j0 (r -r- p, t -r 't)) = Ne2¢,,s ('t) o (o), (3) 

where N is the electron density, e is the charge 

*In a highly ionized plasma in a very strong constant field 
E > Ec -vykTemVeff (T e)/e (T e is the electron temperature) 
the phenomenon of electron "runaway" occurs,'•" making it 
impossible to establish a stationary electron distribution f(v). 
We assume below that the constant field satisfies the condi­
tion E « Ec. 

of the electron and lf!a(3(T) = (va(t)vf3(t+T)> is 
the correlation tensor for velocity fluctuations of 
a given electron in the plasma: (va) = 0. 

If the fluctuations v a ( t) are to be stationary, 
we require lf!a(3 ( T) = lf!(3a<- T). Using this prop­
erty of 1/! a{3 ( T), we obtain from Eqs. (1) and (3) 
the following expression for the "frequency" part 
cp a{3 ( w) of the tensor <I> a{3( r, r', w) = cp a{3 ( w) x 
o(r-r'): 

Ne" {r rp,, (w) = --;zn ~ ['IJlaB ('t) -T- 1jl~ 2 (<))COS (t)'( d't 
0 

-- i~['ljl,_il (-r)- 'VBa. (1:)] sin (t)'( d-r}. 
0 

(4) 

This expression allows us to compute the tensor 
cp a{3 ( w) using the velocity tensor lf! a{3 ( T), which 
is given only for T > 0. However, for T > 0 the 
elements of lf!a{3 can be determined from the fol­
lowing simple considerations. Let the z axis be 
along the magnetic field H0• In the interval be­
tween two collisions an electron behaves as though 
free and moves in a helical path along the magnetic 
field H0 with a rotation frequency wH = I e I H0/mc. 
Hence, for given values of the velocity components 
vx, vy and Vz the nonvanishing second moments 
at t = 0 are 

(Vz (0) Vz ('t')) = V;, (Vx (0) Vx (1:)) = V~ COS (t)Hl', 

(0) Vy (-r)) = v!cos (t)H't, 

(Vx (0) Vy ('t)) =- (Vy (0) Vx (1:)) = v;sin(t)H't, 

if T < T0(v). where T0(v) is the time required to 
travel one mean free path, and zero when T > T0(v). 

Introducing the step function p ( x), which is 
equal to unity for x > 0 and zero for x < 0, we can 
write 

'llzz ('t) = 'v~p (s/v- -r)), 

¢xx ('t) = (v~ cos uJH't' · p (s/v- 1:)), 

'Vyy ('t) = <v! cos (t)H 't' · p (s!v- 't)>, 

~·xu (-r) = 1jJ yx (- -r) = (v~ sin (t)H 't · p (s!v- -r)), 

where the averages are first taken over s, the 
length of a free path for a given velocity v, by 
means of the distribution function 

w (s, v) = exp [- s/l(v)l, l (v) = v/v(v) 

(5) 

[ v ( v) is the electron collision frequency 1 , and then 
with respect to velocity, by means of the electron 
distribution function f0( v). * 

Substituting (5) in (4) and first carrying out the 

*The function f (v) is normalized to unity (not to the den­
sity N). 
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integration over T and then over s, we obtain the 
following expressions for the nonvanishing elements 
<fJa{3(w): 

<¥ zz ( w) == ( Xo ( V' w)), 

<Jlxx(w) = (j)YY(w) = -}«x<-l (v, w)) -- \X(+l (v, w)>}, 

CJlxy(w) = <p;x (w) =-} {(X<_ 1(v, co))- (X(+)(v, w))}, (6) 

where the functions x0, X<->, and X<+> are given by 

X _ Ne2 ~ _ 2/Ve2 VE 

0 - 3n w2 + v2 - 3n w2 -:- v" ' 

Ne" vv2 2l'v'e2 Ve 
X<+l = 3:rt (w -t wH)2 + V2 = :J:t (w + wH) + v" ' (7) 

and the brackets ( ) denoted averages over the 
distribution functions f0 ( v). 

To proceed further in computing the elements 
of <p af3 ( w) we must introduce the concrete prop­
erties of the plasma and its environment. More 
precisely, we must assign the type of collisions 
i.e., the function v ( v ) , the nature of the field E 
(whether Q = 0 or Q » TE: 1 ), and its orientation 
with respect to the field H0• Introducing these 
factors uniquely determines the form of the sta­
tionary kinetic equation satisfied by the function 
fo(v) (cf. [7J) and thus makes it possible, by means 
of (6), to obtain expressions for <p a{3 ( w) in terms 
of such parameters as T -the temperature of the 
heavy plasma particles, N, E, H0, Q, and e, the 
angle between E and H0• 

Certain particular examples will be considered 
below. First we compute the components of the 
tensor T~ft< w ), which establishes the general re­
lation between the <p a{3 ( w) and u a{3 ( w). 

3. From (2) and the definition of the tensor 
<p a{3 ( w) we have 

kT~~f (w) = :n:cp"' (<H) a~iio' (w), (8) 

wh~re ua~ ( w) ~s the inverse of the matrix u af3( w), 
whiCh charactenzes the linear conductivity of the 
plasma in a given equilibrium state with respect to 
a small (with respect to the field E) harmonic 
field e = e 0eiwt. Expressions for the elements of 
u a{3 ( w) in terms of the distribution function f0( v) 
are known from the kinetic theory of electrical 
conductivity (cf. m) and can be written as follows 
(L =dIn f0 /dE:): 

(JX< =~ Gzx c~ Gyz == a,u 0, Gzz (w) = - :n: <xo (v, w) L>. 
cr •x (w) '~ (J yy (w) =c• - "~ { (',(: ) (v, w) C 

+ (XI.+l (v, w)L )), 

· ( ) • ( ) ni 
:ixy w ~·· Jyx Ctl =- 2 {(X, , (v, w) L)- (X<+l (v, w)L)}. 

(9) 

Calculating the inverse matrix u ;~ and using 
(6) we obtain the following expressions for the non­
zero elements of the effective-temperature tensor: 

kT~"rr ==- <xo (~', w))!(Xo (v, <») L), (10) 

(Xi· ;I", W)) ) 

·~ x;--,(v.-w!I)- J · 
(10') 

':<<+I (V, w)) I 
)~+I (v, w;T~{ . 

As expected, at thermodynamic equilibrium 
f0(v) = C exp(-mv2/2kT) and these formulas 

. Ta{3 - "' 

(10") 

giVe eff - Tu a{3" 
4. We consider other particular examples. Sup-

pose that a plasma is highly (in particular, fully) 
ionized so that the electron-electron collision fre­
quency ve » ov where v ( v) is the frequency of 
electron collisions with heavy particles. Then 
(cf. [71 ) , the function f 0( v) is a Maxwellian distri­
bution corresponding to the electron temperature 
Te. In the general case the temperature Te is a 
monotonically increasing function of E that also 
depends on the parameters T, N, H0, Q, and e.* 
In this case Eqs. (10), (10'), and (10") yield a 
unique frequency-independent value of the effec­
tive temperature: 

Thus, as in the case of an equilibrium medium, 
the spectral composition of the electromagnetic 
radiation from a highly ionized plasma is com­
pletely determined by the absorptive capacities 
(the tensor u a{3 ( w), [7 • 121 ) while the intensity of 
this radiation is determined by the electron tem­
perature T e· 

We now consider an isotropic plasma ( Ho = 0 ), 
In this case 

T ,_c 
~ff (w) = T eff (w) Oa[oo 

where u ( w) and Teff( w) are determined by (9) 
and (10) respectively. At low frequencies w « v 
and at high frequencies w » v Eq .. (1 0) yields 
in accordance with Eq. (7), 

kT (0) (e/v) (ev) 
eff = kT ff (oo) -(eLiv) ' e - (evL) · 

The first of these expressions has been given 
earlier. [SJ 

(11) 

Suppose now that the field E is constant and 
that the plasma is weakly ionized ve « ov. Then, 
if the only collisions of importance are elastic col-

*Expressions for T e for actual cases are given in [7] and 
[11]. 
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lisions with neutral particles-solid spheres of ra­
dius a,-the function f0(v) is the well-known 
Druyvesteyn function [13J 

fo (v) = Cexp [- 3m20e1v4/8e2£2flll, (12) 

where l = v/v (v) = (7ra2Nm)- 1, Nm is the density 
of molecules, Oel = 2m/M, and M is the mass of 
the molecule. Substitution of (12) in (10) gives the 
following general expressions for the effective 
temperature in this case: 

00 oc 
rEl " o -x! · ~'· ,-3p--x~ 

kTeff = V \ x-e dx / ·' dx. 
tio J X + a I X -1- ~~ 

el o o 

a= J/31le1m(J) 2/[2'/, (:rraWm}2 eEl]. (13) 

The dependence of Teff on frequency w (which is 
always weak) appears only in the interval a ;%. 1. 
When a» 1 we have 

" 1 ,r····,.-
kl eff =-:;;- eEfl; 1 .~-. - r uu el 

(14) 

At zero frequency the value of Teff can be only 
4/ 1r times greater at most. 
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